We construct several geometric representatives for the fractional branes on either a partially or the completely resolved orbifold. In the process we use large radius and conifold-type monodromies and provide a strong consistency check. In particular, for we give three different sets of geometric representatives. We also find the explicit Seiberg duality which connects our fractional branes to the ones given by the McKay correspondence.
REFERENCES
1.
2.
P. S.
Aspinwall
and M. R.
Douglas
, J. High Energy Phys.
0205
, 031
(2002
), e-print arXiv:hep-th/0110071.3.
M. R.
Douglas
and G. W.
Moore
, “D-branes, quivers, and ALE instantons
,” e-print arXiv:hep-th/9603167.4.
T.
Bridgeland
, A.
King
, and M.
Reid
, J. Am. Math. Soc.
14
, 535
(2001
), e-print arXiv:math.AG/9908027.5.
6.
7.
P. S.
Aspinwall
, Recent Trends in String Theory
(World Scientific
, Singapore
, 2004
), pp. 1
–152
, e-print arXiv:hep-th/0403166.8.
9.
10.
P. S.
Aspinwall
and R. L.
Karp
, J. High Energy Phys.
0304
, 049
(2003
), e-print arXiv:hep-th/0211121.11.
R. L.
Karp
, D-brane stability, geometric engineering, and monodromy in the derived category
, e-print arXiv:hep-th/0512343. e-print arXiv:hep-th/0512343.12.
13.
S.
Benvenuti
S.
Franco
, A.
Hanany
, D.
Martelli
, and J.
Sparks
, J. High Energy Phys.
0506
, 064
(2005
), e-print arXiv:hep-th/0411264.14.
15.
16.
X.
De la Ossa
, B.
Florea
, and H.
Skarke
, Nucl. Phys. B
644
, 170
(2002
), e-print arXiv:hep-th/0104254.17.
D. A.
Cox
and S.
Katz
, Mirror Symmetry and Algebraic Geometry
, Mathematical Surveys and Monographs
Vol. 68
(AMS
, Providence, RI
, 1999
).18.
19.
P. S.
Aspinwall
, B. R.
Greene
, and D. R.
Morrison
, Nucl. Phys. B
416
, 414
(1994
), e-print arXiv:hep-th/9309097.20.
21.
W.
Fulton
, Introduction to Toric Varieties
, Annals of Mathematics Studies
Vol. 131
(Princeton University Press
, Princeton, NJ
, 1993
).22.
I. M.
Gelfand
, M. M.
Kapranov
, and A. V.
Zelevinsky
, Discriminants, Resultants, and Multidimensional Determinants
(Birkhäuser
, Boston, MA
, 1994
).23.
24.
25.
26.
27.
P. S.
Aspinwall
, R. L.
Karp
, and R. P.
Horja
, Commun. Math. Phys.
259
, 45
(2005
), e-print arXiv:hep-th/0209161.28.
29.
A.
Dimca
, Singularities and Topology of Hypersurfaces
, Universitext
(Springer-Verlag
, New York
, 1992
).30.
D.
Rolfsen
, Knots and Links
, Mathematics Lecture Series
Vol. 7 (Publish or Perish
, Houston, TX
, 1990
) (corrected reprint of the 1976 original).31.
32.
A.
Canonaco
and R. L.
Karp
, “Derived autoequivalences and a weighted Beilinson resolution
,” J. Geom. Phys.
(to be published), e-print arXiv:math.AG/0610848.33.
T.
Bridgeland
, Bull. London Math. Soc.
31
, 25
(1999
).34.
A. N.
Rudakov
, S. A.
Kuleshov
, S. K.
Zube
, D. Yu
Nogin
, A. I.
Bondal
, A. L.
Gorodentsev
, M. M.
Gorodentsev
, M. M.
Kapranov
, A. V.
Kvichansky
, and B. V.
Karpov
, Helices and Vector Bundles
, London Mathematical Society Lecture Note Series
Vol. 148
(Cambridge University Press
, Cambridge
, 1990
).35.
D.
Auroux
, L.
Katzarkov
, and D.
Orlov
, “Mirror symmetry for weighted projective planes and their noncommutative deformations
,” e-print arXiv:math.AG/0404281.36.
W.
Barth
, C.
Peters
, A.
Van de Ven
, and K.
Hulek
, “Compact complex surfaces
,” Ergebnisse der Mathematik
Vol. 4
, 2nd enlarged ed. (Springer-Verlag
, Berlin
, 2004
).37.
S. I.
Gelfand
and Y. I.
Manin
, Methods of Homological Algebra
, Springer Monographs in Mathematics
, 2nd ed. (Springer-Verlag
, Berlin
, 2003
).38.
J.
McKay
, “Graphs, singularities, and finite groups
,” The Santa Cruz Conference on Finite Groups
, Proceedings of the Symposia in Pure Mathematics
Vol. 37
(AMS
, Providence, RI
, 1980
), pp. 183
–186
.39.
M.
Kapranov
and E.
Vasserot
, “Kleinian singularities, derived categories and Hall algebras
,” Math. Ann.
316
, 565
(2000
), e-print arXiv:math.AG/9812016.40.
41.
42.
D.
Berenstein
and M. R.
Douglas
, “Seiberg duality for quiver gauge theories
,” e-print arXiv:hep-th/0207027.43.
44.
45.
© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.