Motivated by applicability to quantum operations, quantum information, and quantum probability, we investigate the notion of absolute continuity for operator valued completely positive maps on C-algebras, previously introduced by Parthasarathy [in Athens Conference on Applied Probability and Time Series Analysis I (Springer-Verlag, Berlin, 1996), pp. 3454]. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maximal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Lebesgue decomposition, and we point out the nonuniqueness of the Lebesgue decomposition as well as a sufficient condition for uniqueness. In addition, we consider Radon–Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon–Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi’s matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.

1.
Anderson
,
W. N.
, Jr.
and
Duffin
,
R. J.
, “
Series and parallel addition of matrices
,”
J. Math. Anal. Appl.
26
,
576
(
1969
).
2.
Anderson
, Jr.,
W. N.
and
Trapp
,
G. E.
, “
Shorted operators. II
,”
SIAM J. Appl. Math.
28
,
60
(
1975
).
3.
Ando
,
T.
, “
Lebesgue-type decomposition of positive operators
,”
Acta Sci. Math.
38
,
253
(
1976
).
4.
Ando
,
T.
,
Analytic and Geometric Inequalities and Applications, Math. Appllication
(
Kluwer Academic
,
Dordrecht
,
1999
), Vol.
478
.
5.
Ando
,
T.
and
Szymański
,
W.
, “
Order structure and Lebesgue decomposition of positive definite functions
,”
Indiana Univ. Math. J.
35
,
157
(
1986
).
6.
Arveson
,
W. B.
, “
Subalgebras of C-algebras. I
,”
Acta Math.
123
,
141
(
1969
).
7.
Arveson
,
W. B.
, “
Notes on extensions of C-algebras
,”
Duke Math. J.
44
,
329
(
1977
).
8.
Belavkin
,
V. P.
,
D’Ariano
,
G. M.
, and
Raginsky
,
M.
, “
Operational distance and fidelity for quantum channels
,”
J. Math. Phys.
46
,
062106
(
2005
).
9.
Belavkin
,
V. P.
and
Staszewski
,
P.
, “
A Radon-Nikodym theorem for completely positive maps
,”
Rep. Math. Phys.
24
,
49
(
1986
).
10.
Constantinescu
,
T.
and
Gheondea
,
A.
, “
Representations of Hermitian kernels by means of Krein spaces
,”
Publ. Res. Inst. Math. Sci.
33
,
917
(
1997
).
11.
Choi
,
M. -D.
, “
Completely positive linear maps on complex matrices
,”
Linear Algebr. Appl.
10
,
285
(
1975
).
12.
Davies
,
B. E.
,
Quantum Theory of Open Systems
(
Academic
,
London
,
1976
).
13.
Fillmore
,
P. A.
and
Williams
,
J. P.
, “
On operator ranges
,”
Adv. Math.
7
,
254
(
1971
).
14.
Friedrichs
,
K. O.
, “
Spektraltheorie halbbeschränkter Operatoren und Anwendungen auf die Spektraltheorie von Differentzialoperatoren
,”
Math. Ann.
109
,
465
(
1934
).
15.
Gheondea
,
A.
,
Gudder
,
S.
, and
Jonas
,
P.
, “
On the infimum of quantum effects
,”
J. Math. Phys.
46
,
062102
(
2005
).
16.
Gudder
,
S. P.
, “
A Radon-Nykodim theorem of -algebras
,”
Pac. J. Math.
80
,
141
(
1979
).
17.
Gudder
,
S. P.
, “
Lattice properties of quantum effects
,”
J. Math. Phys.
37
,
2637
(
1996
).
18.
Hassi
,
S.
,
Sebestyén
,
Z.
,
de Snoo
,
H. S. V.
, and
Szafraniec
,
F.
, “
A canonical decomposition for linear operators and linear relations
,”
Acta Math. Acad. Sci. Hung.
115
,
281
(
2007
).
19.
Jørgensen
,
P. E. T.
, “
Unbounded operators: perturbations and commutativity problems
,”
J. Funct. Anal.
39
,
281
(
1980
).
20.
Kato
,
T.
,
Perturbation Theory for Linear Operators
, 2nd ed. (
Springer-Verlag
,
Berlin
,
1976
).
21.
Kosaki
,
H.
, “
Remarks on Lebesgue-type decomposition of positive operators
,”
J. Oper. Theory
11
,
137
(
1984
).
22.
Kosaki
,
H.
, “
Lebesgue decomposition of states in a von Neumann algebra
,”
Am. J. Math.
107
,
697
(
1985
).
23.
Kraus
,
K.
, “
General state changes in quantum theory
,”
Ann. Phys.
64
,
311
(
1971
).
24.
Kraus
,
K.
,
States, Effects, and Operations
(
Springer-Verlag
,
Berlin
,
1983
).
25.
Leung
,
D.
, “
Choi’s proof as a recipe for quantum tomography
,”
J. Math. Phys.
44
,
528
(
2003
).
26.
Meyer
,
P. A.
,
Quantum Probability for Probabilists
(
Springer-Verlag
,
Berlin
,
1993
).
27.
Parthasarathy
,
K. R.
,
Introduction to Quantum Stochastic Calculus
(
Birkhäuser Verlag
,
Basel
,
1992
).
28.
Parthasarathy
,
K. R.
, “
Comparison of completely positive maps on a C-algebra and a Lebesgue decomposition theorem
,” in
Athens Conference on Applied Probability and Time Series Analysis I
,
Lecture Series in Statistics
Vol.
114
(
Springer-Verlag
,
Berlin
,
1996
), pp.
34
54
.
29.
Paulsen
,
V.
,
Completely Bounded Maps and Operator Algebras
(
Cambridge University Press
,
Cambridge
,
2002
).
30.
Pekarev
,
E. L.
and
Shmulyan
,
Yu. L.
, “
Parallel addition and parallel subtraction of operators
,”
Izv. Akad. Nauk SSSR, Ser. Mat.
40
,
366
(
1976
).
31.
Raginsky
,
M.
, “
Radon-Nikodym derivatives of quantum operations
,”
J. Math. Phys.
44
,
5003
(
2003
).
32.
Reed
,
M.
and
Simon
,
B.
,
Methods in Modern Mathematical Physics I. Functional Analysis (Revised and Enlarged Edition)
(
Academic
,
New York
,
1980
).
33.
Simon
,
B.
, “
A canonical decomposition for quadratic forms with applications to monotone convergence theorems
,”
J. Funct. Anal.
28
,
377
(
1978
).
34.
Stinespring
,
W. F.
, “
Positive functions on C-algebras
,”
Proc. Am. Math. Soc.
6
,
211
(
1955
).
You do not currently have access to this content.