Based on a two-parameter generalization of Gauss’ law of error, a generalized log-likelihood is related to a Bregman divergence. This relation is a two-parameter generalization of the well-known relation between log-likelihood and Kullback–Leibler divergence.

1.
R. A.
Fisher
,
Statistical Methods for Research Workers
(
Oliver and Boyd
,
Edinburgh
,
1925
).
2.
S.
Kullback
,
Information Theory and Statistics
(
Wiley
,
New York
,
1959
).
3.
I.
Csiszár
,
Stud. Sci. Math. Hung.
2
,
229
(
1967
).
4.
J.
Naudts
and
J.
Ineq
,
Pure Appl. Math.
5
,
1
(
2004
).
5.
F.
Topsøe
,
AIP Conf. Proc.
965
,
104
(
2007
).
6.
L. M.
Bregman
,
USSR Comput. Math. Math. Phys.
7
,
200
(
1967
).
7.
D.
Petz
,
Acta Math. Hungar.
116
,
127
(
2007
).
8.
C. F.
Gauß
,
Theoria Motus Corporum Coelestium in Sectionibus Conicis Solem Ambientium
(
F. Perthes and I. H. Besser
,
Hamburg
,
1809
).
9.
E. T.
Jaynes
,
Probability Theory: The Logic of Science
, edited by
G. L.
Bretthorst
(
Cambridge University Press
,
Cambridge
,
2003
).
10.
B. H.
Lavenda
,
Statistical Physics: A Probabilistic Approach
(
Wiley
,
New York
,
1991
).
11.
H.
Suyari
and
M.
Tsukada
,
IEEE Trans. Inf. Theory
51
,
753
(
2005
).
12.
T.
Wada
and
H.
Suyari
,
Phys. Lett. A
348
,
89
(
2006
).
13.
G.
Kaniadakis
,
M.
Lissia
, and
A. M.
Scarfone
,
Physica A
340
,
41
(
2004
).
14.
B. D.
Sharma
and
L. J.
Taneja
,
Metrika
22
,
205
(
1975
);
15.
A. M.
Scarfone
,
H.
Suyari
, and
T.
Wada
,
Cent. Eur. J. Phys.
7
,
414
(
2009
).
16.
C.
Tsallis
,
J. Stat. Phys.
52
,
479
(
1988
).
18.
T.
Wada
and
H.
Suyari
,
Phys. Lett. A
368
,
199
(
2007
).
You do not currently have access to this content.