We first consider the Hamiltonian formulation of n=3 systems, in general, and show that all dynamical systems in R3 are locally bi-Hamiltonian. An algorithm is introduced to obtain Poisson structures of a given dynamical system. The construction of the Poisson structures is based on solving an associated first order linear partial differential equations. We find the Poisson structures of a dynamical system recently given by Bender et al [J. Phys. A: Math. Theor.40, F793 (2007)]. Secondly, we show that all dynamical systems in Rn are locally (n1)-Hamiltonian. We give also an algorithm, similar to the case in R3, to construct a rank two Poisson structure of dynamical systems in Rn. We give a classification of the dynamical systems with respect to the invariant functions of the vector field X and show that all autonomous dynamical systems in Rn are superintegrable.

1.
B.
Hernandez-Bermejo
,
J. Math. Phys.
42
,
4984
(
2001
).
2.
B.
Hernandez-Bermejo
,
Phys. Lett. A
287
,
371
(
2001
).
3.
A.
Ay
,
M.
Gürses
, and
K.
Zheltukhin
,
J. Math. Phys.
44
,
5688
(
2003
).
5.
G.
Zhong-Heng
and
C.
Yu-Ming
,
Appl. Math. Mech.
16
,
301
(
1995
).
6.
P. J.
Olver
,
Applications of Lie Groups to Differential Equations
,
Graduate Text in Mathematics
Vol.
107
, 2nd ed. (
Springer-Verlag
,
New-York
,
1993
).
7.
P. J.
Olver
,
Equivalance, Invariants, and Symmetry
(
Cambridge University Press
,
Cambridge
,
1995
).
8.
I. N.
Sneddon
,
Elements of Partial Differential Equations
(
McGraw-Hill
,
New York
,
1985
).
9.
M.
Razavy
and
F. J.
Kennedy
,
Can. J. Phys.
52
,
1532
(
1974
).
10.
11.
C. M.
Bender
,
D. D.
Holm
, and
D. W.
Hook
,
J. Phys. A: Math. Theor.
40
,
F793
(
2007
).
12.
M.
Blaszak
,
Multi-Hamiltonian Theory of Dynamical Systems
,
Text and Monographs in Physics
(
Springer-Verlag
,
New York
,
1998
).
13.
C.
Gonera
and
Y.
Nutku
,
Phys. Lett. A
285
,
301
(
2001
).
You do not currently have access to this content.