This paper is concerned with the superlinear periodic elliptic systems of Hamiltonian type in the whole space. The existence of a ground state solution as well as an infinite number of geometrically distinct solutions is obtained.
REFERENCES
1.
Ackermann
, N.
, “On a periodic Schrödinger equation with nonlinear superlinear part
,” Math. Z.
248
, 423
(2004
).2.
Ackermann
, N.
, “A superposition principle and multibump solutions of periodic Schrödinger equations
,” J. Funct. Anal.
234
, 277
(2006
).3.
Ávila
, A. I.
and Yang
, J.
, “Multiple solutions of nonlinear elliptic systems
,” Nonlinear Diff. Eqns. Appl.
12
, 459
(2006
).4.
Ávila
, A. I.
and Yang
, J.
, “On the existence and shape of least energy solutions for some elliptic systems
,” J. Differ. Equations
191
, 348
(2003
).5.
Bartsch
, T.
and De Figueiredo
, D. G.
, Infinitely Many Solutions of Nonlinear Elliptic Systems
, Progress in Nonlinear Differential Equations and Their Applications
(Birkhäuser
, Basel, Switzerland
, 1999
), Vol. 35
, pp. 51
–67
.6.
Bartsch
, T.
and Ding
, Y.
, “Homoclinic solutions of an infinite-dimensional Hamiltonian system
,” Math. Z.
240
, 289
(2002
).7.
Bartsch
, T.
and Ding
, Y.
, “On a nonlinear Schrödinger equation with periodic potential
,” Math. Ann.
313
, 15
(1999
).8.
Benci
, V.
and Rabinowitz
, P. H.
, “Critical point theorems for indefinite functionals
,” Invent. Math.
52
, 241
(1979
).9.
Clement
, P. H.
, de Fegueiredo
, D. G.
, and Mitedieri
, E.
, “Positive solutions of semilinear elliptic systems
,” Commun. Partial Differ. Equ.
17
, 923
(1992
).10.
Coti Zelati
, V.
and Rabinowitz
, P. H.
, “Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
,” J. Am. Math. Soc.
4
, 693
(1991
).11.
Coti Zelati Sissa
, V.
and Rabinowitz
, P. H.
, “Homoclinic type solutions for a semilinear elliptic PDE on
,” Commun. Pure Appl. Math.
45
, 1217
(1992
).12.
De Figueiredo
, D. G.
and Ding
, Y.
, “Strongly indefinite functionals and multiple solutions of elliptic systems
,” Trans. Am. Math. Soc.
355
, 2973
(2003
).13.
De Figueiredo
, D. G.
and Felmer
, P. L.
, “On superquadratic elliptic systems
,” Trans. Am. Math. Soc.
343
, 97
(1994
).14.
De Figueiredo
, D. G.
, do Ó
, J. M.
, and Ruf
, B.
, “An Orlicz-space approach to superlinear elliptic systems
,” J. Funct. Anal.
224
, 471
(2005
).15.
De Figueiredo
, D. G.
and Yang
, J.
, “Decay, symmetry and existence of solutions of semilinear elliptic systems
,” Nonlinear Anal.
33
, 211
(1998
).16.
Ding
, Y.
, Variational Methods for Strongly Indefinite Problems
, Interdisciplinary Mathematical Science
(World Scientific
, Singapore
, 2007
), Vol. 7
.17.
Hulshof
, J.
and Vandervorst
, R. C. A. M.
, “Differential systems with strongly variational structure
,” J. Funct. Anal.
114
, 32
(1993
).18.
Kryszewski
, W.
and Szulkin
, A.
, “An infinite dimensional Morse theory with applications
,” Trans. Am. Math. Soc.
349
, 3181
(1997
).19.
Kryszewski
, W.
and Szulkin
, A.
, “Generalized linking theorem with an application to semilinear Schrödinger equations
,” Adv. Differ. Equ.
3
, 441
(1998
).20.
Li
, G.
and Yang
, J.
, “Asymptotically linear elliptic systems
,” Commun. Partial Differ. Equ.
29
, 925
(2004
).21.
Lions
, J. L.
and Magenes
, E.
, Non-Homogeneous Boundary Value Problems and Applications
(Springer-Verlag
, Berlin
, 1972
), Vol. 1
.22.
Lions
, P. L.
, “The concentration-compactness principle in the calculus of variations. The locally compact case I, II
,” Ann. Inst. Henri Poincare, Anal. Non Lineair
1
, 109
(1984
).23.
Mitidieri
, E.
, “A Rellich type identity and applications
,” Commun. Partial Differ. Equ.
23
, 211
(1998
).24.
Pistoia
, A.
and Ramos
, M.
, “Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions
,” J. Differ. Equations
201
, 160
(2004
).25.
Reed
, M.
and Simon
, B.
, Analysis of Operators
, Methods of Modern Mathematical Physics
Vol. 4
(Academic
, New York
, 1978
).26.
Séré
, E.
, “Existence of infinitely many homoclinic orbits in Hamiltonian systems
,” Math. Z.
209
, 27
(1992
).27.
Sirakov
, B.
, “On the existence of solutions of Hamiltonian elliptic systems in
,” Adv. Differ. Equ.
5
, 1445
(2000
).28. (
Triebel
, H.
, Interpolation Theory, Function Spaces, Differential Operators
North-Holland
, Amsterdam
, 1978
).29.
Troestler
, C.
and Willem
, M.
, “Nontrivial solution of a semilinear Schrödinger equation
,” Commun. Partial Differ. Equ.
21
, 1431
(1996
).30.
31.
van der Vorst
, R. C. A. M.
, “Variational identities and applications to differential systems
,” Arch. Ration. Mech. Anal.
116
, 375
(1992
).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.