This paper is concerned with the superlinear periodic elliptic systems of Hamiltonian type in the whole space. The existence of a ground state solution as well as an infinite number of geometrically distinct solutions is obtained.

1.
Ackermann
,
N.
, “
On a periodic Schrödinger equation with nonlinear superlinear part
,”
Math. Z.
248
,
423
(
2004
).
2.
Ackermann
,
N.
, “
A superposition principle and multibump solutions of periodic Schrödinger equations
,”
J. Funct. Anal.
234
,
277
(
2006
).
3.
Ávila
,
A. I.
and
Yang
,
J.
, “
Multiple solutions of nonlinear elliptic systems
,”
Nonlinear Diff. Eqns. Appl.
12
,
459
(
2006
).
4.
Ávila
,
A. I.
and
Yang
,
J.
, “
On the existence and shape of least energy solutions for some elliptic systems
,”
J. Differ. Equations
191
,
348
(
2003
).
5.
Bartsch
,
T.
and
De Figueiredo
,
D. G.
,
Infinitely Many Solutions of Nonlinear Elliptic Systems
,
Progress in Nonlinear Differential Equations and Their Applications
(
Birkhäuser
,
Basel, Switzerland
,
1999
), Vol.
35
, pp.
51
67
.
6.
Bartsch
,
T.
and
Ding
,
Y.
, “
Homoclinic solutions of an infinite-dimensional Hamiltonian system
,”
Math. Z.
240
,
289
(
2002
).
7.
Bartsch
,
T.
and
Ding
,
Y.
, “
On a nonlinear Schrödinger equation with periodic potential
,”
Math. Ann.
313
,
15
(
1999
).
8.
Benci
,
V.
and
Rabinowitz
,
P. H.
, “
Critical point theorems for indefinite functionals
,”
Invent. Math.
52
,
241
(
1979
).
9.
Clement
,
P. H.
,
de Fegueiredo
,
D. G.
, and
Mitedieri
,
E.
, “
Positive solutions of semilinear elliptic systems
,”
Commun. Partial Differ. Equ.
17
,
923
(
1992
).
10.
Coti Zelati
,
V.
and
Rabinowitz
,
P. H.
, “
Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials
,”
J. Am. Math. Soc.
4
,
693
(
1991
).
11.
Coti Zelati Sissa
,
V.
and
Rabinowitz
,
P. H.
, “
Homoclinic type solutions for a semilinear elliptic PDE on RN
,”
Commun. Pure Appl. Math.
45
,
1217
(
1992
).
12.
De Figueiredo
,
D. G.
and
Ding
,
Y.
, “
Strongly indefinite functionals and multiple solutions of elliptic systems
,”
Trans. Am. Math. Soc.
355
,
2973
(
2003
).
13.
De Figueiredo
,
D. G.
and
Felmer
,
P. L.
, “
On superquadratic elliptic systems
,”
Trans. Am. Math. Soc.
343
,
97
(
1994
).
14.
De Figueiredo
,
D. G.
,
do Ó
,
J. M.
, and
Ruf
,
B.
, “
An Orlicz-space approach to superlinear elliptic systems
,”
J. Funct. Anal.
224
,
471
(
2005
).
15.
De Figueiredo
,
D. G.
and
Yang
,
J.
, “
Decay, symmetry and existence of solutions of semilinear elliptic systems
,”
Nonlinear Anal.
33
,
211
(
1998
).
16.
Ding
,
Y.
,
Variational Methods for Strongly Indefinite Problems
,
Interdisciplinary Mathematical Science
(
World Scientific
,
Singapore
,
2007
), Vol.
7
.
17.
Hulshof
,
J.
and
Vandervorst
,
R. C. A. M.
, “
Differential systems with strongly variational structure
,”
J. Funct. Anal.
114
,
32
(
1993
).
18.
Kryszewski
,
W.
and
Szulkin
,
A.
, “
An infinite dimensional Morse theory with applications
,”
Trans. Am. Math. Soc.
349
,
3181
(
1997
).
19.
Kryszewski
,
W.
and
Szulkin
,
A.
, “
Generalized linking theorem with an application to semilinear Schrödinger equations
,”
Adv. Differ. Equ.
3
,
441
(
1998
).
20.
Li
,
G.
and
Yang
,
J.
, “
Asymptotically linear elliptic systems
,”
Commun. Partial Differ. Equ.
29
,
925
(
2004
).
21.
Lions
,
J. L.
and
Magenes
,
E.
,
Non-Homogeneous Boundary Value Problems and Applications
(
Springer-Verlag
,
Berlin
,
1972
), Vol.
1
.
22.
Lions
,
P. L.
, “
The concentration-compactness principle in the calculus of variations. The locally compact case I, II
,”
Ann. Inst. Henri Poincare, Anal. Non Lineair
1
,
109
(
1984
).
23.
Mitidieri
,
E.
, “
A Rellich type identity and applications
,”
Commun. Partial Differ. Equ.
23
,
211
(
1998
).
24.
Pistoia
,
A.
and
Ramos
,
M.
, “
Locating the peaks of the least energy solutions to an elliptic system with Neumann boundary conditions
,”
J. Differ. Equations
201
,
160
(
2004
).
25.
Reed
,
M.
and
Simon
,
B.
,
Analysis of Operators
,
Methods of Modern Mathematical Physics
Vol.
4
(
Academic
,
New York
,
1978
).
26.
Séré
,
E.
, “
Existence of infinitely many homoclinic orbits in Hamiltonian systems
,”
Math. Z.
209
,
27
(
1992
).
27.
Sirakov
,
B.
, “
On the existence of solutions of Hamiltonian elliptic systems in RN
,”
Adv. Differ. Equ.
5
,
1445
(
2000
).
28.
Triebel
,
H.
,
Interpolation Theory, Function Spaces, Differential Operators
(
North-Holland
,
Amsterdam
,
1978
).
29.
Troestler
,
C.
and
Willem
,
M.
, “
Nontrivial solution of a semilinear Schrödinger equation
,”
Commun. Partial Differ. Equ.
21
,
1431
(
1996
).
30.
Willem
,
M.
,
Minimax Theorems
(
Birkhäuser
,
Berlin
,
1996
).
31.
van der Vorst
,
R. C. A. M.
, “
Variational identities and applications to differential systems
,”
Arch. Ration. Mech. Anal.
116
,
375
(
1992
).
You do not currently have access to this content.