A theoretical prediction for the total width of the positronium decay in quantum electrodynamics has been given by Kniehl et al. [“Irrational constants in positronium decays,” Nucl. Phys. B (Proc. Suppl.)184, 14 (2008), arXiv:hep-ph/0811.0306] in the form of an expansion in Sommerfeld’s fine-structure constant. The coefficients of this expansion are given in the form of two-dimensional definite integrals, with an integrand involving the polylogarithm function. We provide here an analytic expression for the one-loop contribution to this problem.

1.
Kniehl
,
B. A.
,
Kotikov
,
A. V.
, and
Veretin
,
O. L.
, “
Irrational constants in positronium decays
,”
Nucl. Phys. B (Proc. Suppl.)
183
,
14
(
2008
), arXiv:hep-ph/0811.0306.
2.
Kniehl
,
B. A.
,
Kotikov
,
A. V.
, and
Veretin
,
O. L.
, “
Orthopositronium lifetime: Analytic results in O(α) and O(α3lnα)
,”
Phys. Rev. Lett.
101
,
193401
(
2008
).
3.
Lewin
,
L.
,
Dilogarithms and Associated Functions
, 2nd ed. (
Elsevier
,
New York
/
North Holland
,
Amsterdam
,
1981
).
4.
Zagier
,
D.
,
Number Theory and Related Topics
(
Tata Institute of Fundamental Research
,
Bombay
,
1988
), Chap. 12, pp.
231
249
.
You do not currently have access to this content.