We study the structure of arbitrary graded Lie algebras. We show that any of such algebras L with a symmetric G-support is of the form L=U+jIj with U a subspace of L1 and any Ij a well described graded ideal of L, satisfying [Ij,Ik]=0 if jk. Under certain conditions, the gr-simplicity of L is characterized and it is shown that L is the direct sum of the family of its minimal graded ideals, each one being a gr-simple graded Lie algebra.

1.
Bahturin
,
Y. A.
,
Shestakov
,
I. P.
, and
Zaicev
,
M. V.
, “
Gradings on simple Jordan and Lie algebras
,”
J. Algebra
283
,
849
(
2005
).
2.
Bahturin
,
Y. A.
and
Tvalavadze
,
M.
, “
Group gradings on G2
,”
Comm. Algebra
37
,
885
(
2009
).
3.
A. J.
Calderón Martín
, “
On split Lie algebras with symmetric root systems
,”
Proc. Indian Acad. Sci., Math. Sci.
118
,
351
(
2008
).
4.
Calderón
,
A. J.
,
Draper
,
C.
, and
Martín
,
C.
, “
Gradings of the real forms of f4
and g2,” University of Málaga preprint,
2009
.
5.
Cuenca
,
J. A.
,
García
,
A.
, and
Martín
,
C.
, “
Structure theory for L-algebras
,”
Math. Proc. Cambridge Philos. Soc.
107
,
361
(
1990
).
6.
Draper
,
C.
and
Martín
,
C.
, “
Gradings on g2
,”
Linear Algebr. Appl.
418
,
85
(
2006
).
7.
Draper
,
C.
and
Martín
,
C.
, “
Gradings on f4
,”
Rev. Math. Iberoamericana
(to be published).
8.
Havlícek
,
M.
,
Patera
,
J.
, and
Pelatonova
,
E.
, “
On Lie gradings II
,”
Linear Algebr. Appl.
277
,
97
(
1998
).
9.
Havlíček
,
M.
,
Patera
,
J.
, and
Pelatonova
,
E.
, “
On Lie gradings III. Gradings of the real forms of classical Lie algebras (dedicated to the memory of H. Zassenhaus)
,”
Linear Algebr. Appl.
314
,
1
(
2000
).
10.
Havlíček
,
M.
,
Patera
,
J.
,
Pelatonová
,
E.
, and
Tolar
,
J.
, “
On fine gradings and their symmetries
,”
Czech. J. Phys.
51
,
383
(
2001
).
11.
Havlíček
,
M.
,
Patera
,
J.
, and
Pelatonová
,
E.
, “
Automorphisms of fine gradings of sl(n,C) associated with the generalized Pauli matrices
,”
J. Math. Phys.
43
,
1083
(
2002
).
12.
Patera
,
J.
,
Pelantova
,
E.
, and
Svobodova
,
M.
, “
The eight fine gradings of sl(4,C) and o(6,C)
,”
J. Math. Phys.
43
,
6353
(
2002
).
13.
Patera
,
J.
,
Pelantova
,
E.
, and
Svobodova
,
M.
, “
Fine gradings of o(4,C)
,”
J. Phys.
45
,
2188
(
2004
).
14.
Schue
,
J. R.
, “
Hilbert space methods in the theory of Lie algebras
,”
Trans. Am. Math. Soc.
95
,
69
(
1960
).
15.
Schue
,
J. R.
, “
Cartan decompositions for L-algebras
,”
Trans. Am. Math. Soc.
98
,
334
(
1961
).
16.
Stumme
,
N.
, “
The structure of locally finite split Lie algebras
,”
J. Algebra
220
,
664
(
1999
).
You do not currently have access to this content.