We study the structure of arbitrary graded Lie algebras. We show that any of such algebras with a symmetric -support is of the form with a subspace of and any a well described graded ideal of , satisfying if . Under certain conditions, the gr-simplicity of is characterized and it is shown that is the direct sum of the family of its minimal graded ideals, each one being a gr-simple graded Lie algebra.
REFERENCES
1.
Bahturin
, Y. A.
, Shestakov
, I. P.
, and Zaicev
, M. V.
, “Gradings on simple Jordan and Lie algebras
,” J. Algebra
283
, 849
(2005
).2.
Bahturin
, Y. A.
and Tvalavadze
, M.
, “Group gradings on
,” Comm. Algebra
37
, 885
(2009
).3.
A. J.
Calderón Martín
, “On split Lie algebras with symmetric root systems
,” Proc. Indian Acad. Sci., Math. Sci.
118
, 351
(2008
).4.
Calderón
, A. J.
, Draper
, C.
, and Martín
, C.
, “Gradings of the real forms of
and ,” University of Málaga preprint, 2009
.5.
Cuenca
, J. A.
, García
, A.
, and Martín
, C.
, “Structure theory for -algebras
,” Math. Proc. Cambridge Philos. Soc.
107
, 361
(1990
).6.
Draper
, C.
and Martín
, C.
, “Gradings on
,” Linear Algebr. Appl.
418
, 85
(2006
).7.
Draper
, C.
and Martín
, C.
, “Gradings on
,” Rev. Math. Iberoamericana
(to be published).8.
Havlícek
, M.
, Patera
, J.
, and Pelatonova
, E.
, “On Lie gradings II
,” Linear Algebr. Appl.
277
, 97
(1998
).9.
Havlíček
, M.
, Patera
, J.
, and Pelatonova
, E.
, “On Lie gradings III. Gradings of the real forms of classical Lie algebras (dedicated to the memory of H. Zassenhaus)
,” Linear Algebr. Appl.
314
, 1
(2000
).10.
Havlíček
, M.
, Patera
, J.
, Pelatonová
, E.
, and Tolar
, J.
, “On fine gradings and their symmetries
,” Czech. J. Phys.
51
, 383
(2001
).11.
Havlíček
, M.
, Patera
, J.
, and Pelatonová
, E.
, “Automorphisms of fine gradings of associated with the generalized Pauli matrices
,” J. Math. Phys.
43
, 1083
(2002
).12.
Patera
, J.
, Pelantova
, E.
, and Svobodova
, M.
, “The eight fine gradings of and
,” J. Math. Phys.
43
, 6353
(2002
).13.
Patera
, J.
, Pelantova
, E.
, and Svobodova
, M.
, “Fine gradings of
,” J. Phys.
45
, 2188
(2004
).14.
Schue
, J. R.
, “Hilbert space methods in the theory of Lie algebras
,” Trans. Am. Math. Soc.
95
, 69
(1960
).15.
Schue
, J. R.
, “Cartan decompositions for -algebras
,” Trans. Am. Math. Soc.
98
, 334
(1961
).16.
Stumme
, N.
, “The structure of locally finite split Lie algebras
,” J. Algebra
220
, 664
(1999
).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.