We study the final state problem for the nonlinear Klein–Gordon equation, , where . We prove the existence of solutions in the neighborhood of the approximate solutions , where is the free evolution group defined by , , and are the direct and inverse Fourier transformations, respectively, and , with a given final data is a real-valued function and is small.
REFERENCES
1.
Brenner
, P.
, “On space time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations
,” Math. Z.
186
, 383
(1984
).2.
Brenner
, P.
, “On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations
,” J. Differ. Equations
56
, 310
(1985
).3.
Delort
, J. -M.
, “Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi-linéaire à données petites en dimension 1
,” Ann. Sci. Ec. Normale Super.
34
, 1
(2001
).4.
Delort
, J. -M.
, Fang
, D.
, and Xue
, R.
, “Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions
,” J. Funct. Anal.
211
, 288
(2004
).5.
Fedoryuk
, M. V.
, Asymptotics: Integrals and Series. Mathematical Reference Library
(Nauka
, Moscow
, 1987
).6.
Georgiev
, V.
, “Decay estimates for the Klein-Gordon equation
,” Commun. Partial Differ. Equ.
17
, 1111
(1992
).7.
Georgiev
, V.
and Lecente
, S.
, “Weighted Sobolev spaces applied to nonlinear Klein-Gordon equation
,” C. R. Acad. Sci., Ser. I: Math.
329
, 21
(1999
).8.
Georgiev
, V.
and Yordanov
, B.
(unpublished).9.
Ginibre
, J.
and Velo
, G.
, “Time decay of finite energy solutions of the nonlinear Klein-Gordon equation
,” Ann. Inst. Henri Poincare, Sect. A
43
, 399
(1985
).10.
Hayashi
, N.
, “The initial value problem for the derivative nonlinear Schrödinger equation in the energy space
,” Nonlinear Anal. Theory, Methods Appl.
20
, 823
(1993
).11.
Hayashi
, N.
and Naumkin
, P. I.
, “Asymptotics in large time of solutions to nonlinear Schrödinger and Hartree equations
,” Am. J. Math.
120
, 369
(1998
).12.
Hayashi
, N.
and Ozawa
, T.
, “Modified wave operators for the derivative nonlinear Schrödinger equations
,” Math. Ann.
298
, 557
(1994
).13.
Katayama
, S.
, “A note on global existence of solutions to nonlinear Klein-Gordon equations in one space dimension
,” J. Math. Kyoto Univ.
39
, 203
(1999
).14.
Klainerman
, S.
, “Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions
,” Commun. Pure Appl. Math.
38
, 631
(1985
).15.
Lindblad
, H.
and Soffer
, A.
, “A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation
,” Lett. Math. Phys.
73
, 249
(2005
).16.
Lindblad
, H.
and Soffer
, A.
, “A remark on long range scattering for the nonlinear Klein-Gordon equation
,” J. Hyperbolic Differ. Equ.
2
, 77
(2005
).17.
Marshall
, B.
, Strauss
, W.
, and Wainger
, S.
, “ estimates for the Klein-Gordon equation
,” J. Math. Pures Appl.
59
, 417
(1980
).18.
Moriyama
, K.
, “Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension
,” Diff. Integral Eq.
10
, 499
(1997
).19.
Moriyama
, K.
, Tonegawa
, S.
, and Tsutsumi
, Y.
, “Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension
,” Funkc. Ekvac.
40
, 313
(1997
).20.
Ozawa
, T.
, “Long range scattering for nonlinear Schrödinger equations in one space dimension
,” Commun. Math. Phys.
139
, 479
(1991
).21.
Ozawa
, T.
, Tustaya
, K.
, and Tsutsumi
, Y.
, “Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlineaarity in two space dimensions
,” Math. Z.
222
, 341
(1996
).22.
Pecher
, H.
, “Nonlinear small data scattering for the wave and Klein-Gordon equation
,” Math. Z.
185
, 261
(1984
).23.
Pecher
, H.
, “Low energy scattering for Klein-Gordon equations
,” J. Funct. Anal.
63
, 101
(1985
).24.
Shatah
, J.
, “Normal forms and quadratic nonlinear Klein-Gordon equations
,” Commun. Pure Appl. Math.
38
, 685
(1985
).25.
Strauss
, W.
, “Nonlinear scattering at low energy
,” J. Funct. Anal.
41
, 110
(1981
).26.
Sunagawa
, H.
, “On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass in one space dimension
,” J. Differ. Equations
192
, 308
(2003
).27.
Sunagawa
, H.
, “Remarks on the asymptotic behavior of the cubic nonlinear Klein-Gordon equations in one space dimension
,” Diff. Integral Eq.
18
, 481
(2005
).28.
Sunagawa
, H.
, “Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms
,” J. Math. Soc. Jpn.
58
, 379
(2006
).29.
Weder
, R.
, “Inverse scattering on the line for the nonlinear Klein-Gordon equation with a potential
,” J. Math. Anal. Appl.
252
, 102
(2000
).30.
Yajima
, K.
, “Existence of solutions for Schrödinger evolution equations
,” Commun. Math. Phys.
110
, 415
(1987
).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.