We study the final state problem for the nonlinear Klein–Gordon equation, utt+uuxx=μu3,tR,xR, where μR. We prove the existence of solutions in the neighborhood of the approximate solutions 2ReU(t)w+(t), where U(t) is the free evolution group defined by U(t)=F1eitξF, x=1+x2, F and F1 are the direct and inverse Fourier transformations, respectively, and w+(t,x)=F1(û+(ξ)e(3/2)iμξ2|û+(ξ)|2logt), with a given final data u+ is a real-valued function and ξ3iξû+(ξ)L is small.

1.
Brenner
,
P.
, “
On space time means and everywhere defined scattering operators for nonlinear Klein-Gordon equations
,”
Math. Z.
186
,
383
(
1984
).
2.
Brenner
,
P.
, “
On scattering and everywhere defined scattering operators for nonlinear Klein-Gordon equations
,”
J. Differ. Equations
56
,
310
(
1985
).
3.
Delort
,
J. -M.
, “
Existence globale et comportement asymptotique pour l’équation de Klein-Gordon quasi-linéaire à données petites en dimension 1
,”
Ann. Sci. Ec. Normale Super.
34
,
1
(
2001
).
4.
Delort
,
J. -M.
,
Fang
,
D.
, and
Xue
,
R.
, “
Global existence of small solutions for quadratic quasilinear Klein-Gordon systems in two space dimensions
,”
J. Funct. Anal.
211
,
288
(
2004
).
5.
Fedoryuk
,
M. V.
,
Asymptotics: Integrals and Series. Mathematical Reference Library
(
Nauka
,
Moscow
,
1987
).
6.
Georgiev
,
V.
, “
Decay estimates for the Klein-Gordon equation
,”
Commun. Partial Differ. Equ.
17
,
1111
(
1992
).
7.
Georgiev
,
V.
and
Lecente
,
S.
, “
Weighted Sobolev spaces applied to nonlinear Klein-Gordon equation
,”
C. R. Acad. Sci., Ser. I: Math.
329
,
21
(
1999
).
8.
Georgiev
,
V.
and
Yordanov
,
B.
(unpublished).
9.
Ginibre
,
J.
and
Velo
,
G.
, “
Time decay of finite energy solutions of the nonlinear Klein-Gordon equation
,”
Ann. Inst. Henri Poincare, Sect. A
43
,
399
(
1985
).
10.
Hayashi
,
N.
, “
The initial value problem for the derivative nonlinear Schrödinger equation in the energy space
,”
Nonlinear Anal. Theory, Methods Appl.
20
,
823
(
1993
).
11.
Hayashi
,
N.
and
Naumkin
,
P. I.
, “
Asymptotics in large time of solutions to nonlinear Schrödinger and Hartree equations
,”
Am. J. Math.
120
,
369
(
1998
).
12.
Hayashi
,
N.
and
Ozawa
,
T.
, “
Modified wave operators for the derivative nonlinear Schrödinger equations
,”
Math. Ann.
298
,
557
(
1994
).
13.
Katayama
,
S.
, “
A note on global existence of solutions to nonlinear Klein-Gordon equations in one space dimension
,”
J. Math. Kyoto Univ.
39
,
203
(
1999
).
14.
Klainerman
,
S.
, “
Global existence of small amplitude solutions to nonlinear Klein-Gordon equations in four space-time dimensions
,”
Commun. Pure Appl. Math.
38
,
631
(
1985
).
15.
Lindblad
,
H.
and
Soffer
,
A.
, “
A remark on asymptotic completeness for the critical nonlinear Klein-Gordon equation
,”
Lett. Math. Phys.
73
,
249
(
2005
).
16.
Lindblad
,
H.
and
Soffer
,
A.
, “
A remark on long range scattering for the nonlinear Klein-Gordon equation
,”
J. Hyperbolic Differ. Equ.
2
,
77
(
2005
).
17.
Marshall
,
B.
,
Strauss
,
W.
, and
Wainger
,
S.
, “
LpLq estimates for the Klein-Gordon equation
,”
J. Math. Pures Appl.
59
,
417
(
1980
).
18.
Moriyama
,
K.
, “
Normal forms and global existence of solutions to a class of cubic nonlinear Klein-Gordon equations in one space dimension
,”
Diff. Integral Eq.
10
,
499
(
1997
).
19.
Moriyama
,
K.
,
Tonegawa
,
S.
, and
Tsutsumi
,
Y.
, “
Almost global existence of solutions for the quadratic semilinear Klein-Gordon equation in one space dimension
,”
Funkc. Ekvac.
40
,
313
(
1997
).
20.
Ozawa
,
T.
, “
Long range scattering for nonlinear Schrödinger equations in one space dimension
,”
Commun. Math. Phys.
139
,
479
(
1991
).
21.
Ozawa
,
T.
,
Tustaya
,
K.
, and
Tsutsumi
,
Y.
, “
Global existence and asymptotic behavior of solutions for the Klein-Gordon equations with quadratic nonlineaarity in two space dimensions
,”
Math. Z.
222
,
341
(
1996
).
22.
Pecher
,
H.
, “
Nonlinear small data scattering for the wave and Klein-Gordon equation
,”
Math. Z.
185
,
261
(
1984
).
23.
Pecher
,
H.
, “
Low energy scattering for Klein-Gordon equations
,”
J. Funct. Anal.
63
,
101
(
1985
).
24.
Shatah
,
J.
, “
Normal forms and quadratic nonlinear Klein-Gordon equations
,”
Commun. Pure Appl. Math.
38
,
685
(
1985
).
25.
Strauss
,
W.
, “
Nonlinear scattering at low energy
,”
J. Funct. Anal.
41
,
110
(
1981
).
26.
Sunagawa
,
H.
, “
On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon equations with different mass in one space dimension
,”
J. Differ. Equations
192
,
308
(
2003
).
27.
Sunagawa
,
H.
, “
Remarks on the asymptotic behavior of the cubic nonlinear Klein-Gordon equations in one space dimension
,”
Diff. Integral Eq.
18
,
481
(
2005
).
28.
Sunagawa
,
H.
, “
Large time behavior of solutions to the Klein-Gordon equation with nonlinear dissipative terms
,”
J. Math. Soc. Jpn.
58
,
379
(
2006
).
29.
Weder
,
R.
, “
Inverse scattering on the line for the nonlinear Klein-Gordon equation with a potential
,”
J. Math. Anal. Appl.
252
,
102
(
2000
).
30.
Yajima
,
K.
, “
Existence of solutions for Schrödinger evolution equations
,”
Commun. Math. Phys.
110
,
415
(
1987
).
You do not currently have access to this content.