We consider the Itzykson–Zuber–Eynard–Mehta two-matrix model and prove that the partition function is an isomonodromic τ function in a sense that generalizes that of Jimbo et al. [ “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients,” Physica D2, 306 (1981)]. In order to achieve the generalization we need to define a notion of τ function for isomonodromic systems where the adregularity of the leading coefficient is not a necessary requirement.

1.
Adler
,
M.
and
Van Moerbeke
,
P.
, “
The spectrum of coupled random matrices
,”
Ann. Math.
149
,
921
(
1999
).
2.
Bergere
,
M.
and
Eynard
,
B.
, “
Mixed correlation function and spectral curve for the 2-matrix model
,”
J. Phys. A
39
,
15091
(
2006
).
3.
Bertola
,
M.
, “
Biorthogonal polynomials for two-matrix models with semiclassical potentials
,”
J. Approx. Theory
144
,
162
(
2007
).
4.
Bertola
,
M.
,
Eynard
,
B.
, and
Harnad
,
J.
, “
Duality, biorthogonal polynomials and multi-matrix models
,”
Commun. Math. Phys.
229
,
73
(
2002
).
5.
Bertola
,
M.
,
Eynard
,
B.
, and
Harnad
,
J.
, “
Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem
,”
Commun. Math. Phys.
243
,
193
(
2003
).
6.
Bertola
,
M.
, “
Moment determinants as isomonodromic tau functions
,”
Nonlinearity
22
,
29
(
2009
);
7.
Bertola
,
M.
,
Eynard
,
B.
, and
Harnad
,
J.
, “
Duality of spectral curves arising in two-matrix models
,”
Theor. Math. Phys.
134
,
27
(
2003
).
8.
Bertola
,
M.
and
Eynard
,
B.
, “
The PDEs of biorthogonal polynomials arising in the two-matrix model
,”
Math. Phys., Anal. Geom.
9
,
23
(
2006
).
9.
Bertola
,
M.
,
Eynard
,
B.
, and
Harnad
,
J.
, “
Partition functions for matrix models and isomonodromic tau functions
,”
J. Phys. A
36
,
3067
(
2003
).
10.
Bertola
,
M.
and
Gekhtman
,
M.
, “
Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions
,”
Constructive Approx.
26
,
383
(
2007
).
11.
Bertola
,
M.
and
Mo
,
M. Y.
, “
Isomodromic deformation of resonant rational connections
,”
Int. Math. Res. Pap.
11
,
565
(
2005
).
12.
Bertola
,
M.
,
Eynard
,
B.
, and
Harnad
,
J.
, “
Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions
,”
Commun. Math. Phys.
263
,
401
(
2006
).
13.
Bertola
,
M.
,
Harnad
,
J.
, and
Its
,
A. ,
Dual Riemann–Hilbert approach to biorthogonal polynomials
” (unpublished).
14.
Daul
,
J. M.
,
Kazakov
,
V.
, and
Kostov
,
I. K.
, “
Rational theories of 2D gravity from the two-matrix model
,”
Nucl. Phys. B
409
,
311
(
1993
).
15.
di Francesco
,
P.
,
Ginsparg
,
P.
, and
Zinn-Justin
,
J.
, “
2D gravity and random matrices
,”
Phys. Rep.
254
,
1
(
1995
).
16.
Ercolani
,
N. M.
and
McLaughlin
,
K. T.-R.
, “
Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model
,”
Physica D
152–153
,
232
(
2001
).
17.
Eynard
,
B.
and
Mehta
,
M. L.
, “
Matrices coupled in a chain: Eigenvalue correlations
,”
J. Phys. A
31
,
4449
(
1998
).
18.
Fokas
,
A.
,
Its
,
A.
, and
Kitaev
,
A.
, “
The isomonodromy approach to matrix models in 2D quantum gravity
,”
Commun. Math. Phys.
147
,
395
(
1992
).
19.
Its
,
A. R.
,
Tracy
,
A.
, and
Widom
,
H.
, “
“Random words, Toeplitz determinants and integrable systems. II. Advances in nonlinear mathematics and science
,”
Physica D
152-153
,
199
(
2001
).
20.
Jimbo
,
M.
,
Miwa
,
T.
, and
Ueno
,
K.
, “
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients
,”
Physica D
2
,
306
(
1981
).
21.
Jimbo
,
M.
,
Miwa
,
T.
, and
Ueno
,
K.
, “
Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II
.,”
Physica D
2
,
407
(
1981
).
22.
Kapaev
,
A. A.
, “
The Riemann–Hilbert problem for the bi-orthogonal polynomials
,”
J. Phys. A
36
,
4629
(
2003
).
23.
Kontsevich
,
M.
, “
Intersection theory on the moduli space of curves and the matrix Airy function
,”
Commun. Math. Phys.
147
,
1
(
1992
).
24.
Kuijlaars
,
A. B. J.
and
McLaughlin
,
K. T.-R.
, “
A Riemann-Hilbert problem for biorthogonal polynomials
,”
J. Comput. Appl. Math.
178
,
313
(
2005
).
25.
Mehta
,
M. L.
and
Shukla
,
P.
, “
Two coupled matrices: Eigenvalue correlations and spacing functions
,”
J. Phys. A
27
,
7793
(
1994
).
26.
Tracy
,
C.
and
Widom
,
H.
, “
Differential equations for Dyson processes
,”
Commun. Math. Phys.
252
,
7
(
2004
).
You do not currently have access to this content.