We consider the Itzykson–Zuber–Eynard–Mehta two-matrix model and prove that the partition function is an isomonodromic function in a sense that generalizes that of Jimbo et al. [ “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients,” Physica D 2, 306 (1981)]. In order to achieve the generalization we need to define a notion of function for isomonodromic systems where the adregularity of the leading coefficient is not a necessary requirement.
REFERENCES
1.
Adler
, M.
and Van Moerbeke
, P.
, “The spectrum of coupled random matrices
,” Ann. Math.
149
, 921
(1999
).2.
Bergere
, M.
and Eynard
, B.
, “Mixed correlation function and spectral curve for the 2-matrix model
,” J. Phys. A
39
, 15091
(2006
).3.
Bertola
, M.
, “Biorthogonal polynomials for two-matrix models with semiclassical potentials
,” J. Approx. Theory
144
, 162
(2007
).4.
Bertola
, M.
, Eynard
, B.
, and Harnad
, J.
, “Duality, biorthogonal polynomials and multi-matrix models
,” Commun. Math. Phys.
229
, 73
(2002
).5.
Bertola
, M.
, Eynard
, B.
, and Harnad
, J.
, “Differential systems for biorthogonal polynomials appearing in 2-matrix models and the associated Riemann-Hilbert problem
,” Commun. Math. Phys.
243
, 193
(2003
).6.
Bertola
,M.
, “Moment determinants as isomonodromic tau functions
,” Nonlinearity
22
, 29
(2009
);e-print arXiv:0805.0446.
7.
Bertola
, M.
, Eynard
, B.
, and Harnad
, J.
, “Duality of spectral curves arising in two-matrix models
,” Theor. Math. Phys.
134
, 27
(2003
).8.
Bertola
, M.
and Eynard
, B.
, “The PDEs of biorthogonal polynomials arising in the two-matrix model
,” Math. Phys., Anal. Geom.
9
, 23
(2006
).9.
Bertola
, M.
, Eynard
, B.
, and Harnad
, J.
, “Partition functions for matrix models and isomonodromic tau functions
,” J. Phys. A
36
, 3067
(2003
).10.
Bertola
, M.
and Gekhtman
, M.
, “Biorthogonal Laurent polynomials, Töplitz determinants, minimal Toda orbits and isomonodromic tau functions
,” Constructive Approx.
26
, 383
(2007
).11.
Bertola
, M.
and Mo
, M. Y.
, “Isomodromic deformation of resonant rational connections
,” Int. Math. Res. Pap.
11
, 565
(2005
).12.
Bertola
, M.
, Eynard
, B.
, and Harnad
, J.
, “Semiclassical orthogonal polynomials, matrix models and isomonodromic tau functions
,” Commun. Math. Phys.
263
, 401
(2006
).13.
Bertola
, M.
, Harnad
, J.
, and Its
, A. ,
“Dual Riemann–Hilbert approach to biorthogonal polynomials
” (unpublished).14.
Daul
, J. M.
, Kazakov
, V.
, and Kostov
, I. K.
, “Rational theories of 2D gravity from the two-matrix model
,” Nucl. Phys. B
409
, 311
(1993
).15.
di Francesco
, P.
, Ginsparg
, P.
, and Zinn-Justin
, J.
, “2D gravity and random matrices
,” Phys. Rep.
254
, 1
(1995
).16.
Ercolani
, N. M.
and McLaughlin
, K. T.-R.
, “Asymptotics and integrable structures for biorthogonal polynomials associated to a random two-matrix model
,” Physica D
152–153
, 232
(2001
).17.
Eynard
, B.
and Mehta
, M. L.
, “Matrices coupled in a chain: Eigenvalue correlations
,” J. Phys. A
31
, 4449
(1998
).18.
Fokas
, A.
, Its
, A.
, and Kitaev
, A.
, “The isomonodromy approach to matrix models in 2D quantum gravity
,” Commun. Math. Phys.
147
, 395
(1992
).19.
Its
, A. R.
, Tracy
, A.
, and Widom
, H.
, ““Random words, Toeplitz determinants and integrable systems. II. Advances in nonlinear mathematics and science
,” Physica D
152-153
, 199
(2001
).20.
Jimbo
, M.
, Miwa
, T.
, and Ueno
, K.
, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients
,” Physica D
2
, 306
(1981
).21.
Jimbo
, M.
, Miwa
, T.
, and Ueno
, K.
, “Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II
.,” Physica D
2
, 407
(1981
).22.
Kapaev
, A. A.
, “The Riemann–Hilbert problem for the bi-orthogonal polynomials
,” J. Phys. A
36
, 4629
(2003
).23.
Kontsevich
, M.
, “Intersection theory on the moduli space of curves and the matrix Airy function
,” Commun. Math. Phys.
147
, 1
(1992
).24.
Kuijlaars
, A. B. J.
and McLaughlin
, K. T.-R.
, “A Riemann-Hilbert problem for biorthogonal polynomials
,” J. Comput. Appl. Math.
178
, 313
(2005
).25.
Mehta
, M. L.
and Shukla
, P.
, “Two coupled matrices: Eigenvalue correlations and spacing functions
,” J. Phys. A
27
, 7793
(1994
).26.
Tracy
, C.
and Widom
, H.
, “Differential equations for Dyson processes
,” Commun. Math. Phys.
252
, 7
(2004
).© 2009 American Institute of Physics.
2009
American Institute of Physics
You do not currently have access to this content.