Finite Lorentz groups acting on four-dimensional vector spaces coordinatized by finite fields with a prime number of elements are represented as homomorphic images of countable, rational subgroups of the Lorentz group acting on real four-dimensional space-time. Bounded subsets of the real Lorentz group are retractable with arbitrary precision to finite subsets of such rational subgroups. These finite retracts correspond, via local isomorphisms, to well-behaved subsets of Lorentz groups over finite fields. This establishes a relationship of approximation between the real Lorentz group and Lorentz groups over very large finite fields.

1.
Ahmavaara
,
Y.
, “
Relativistic quantum theory as a group problem, II. World geometry and the elementary particles
,”
Ann. Acad. Sci. Fenn., Ser. A6
95 (
1962
).
2.
Ahmavaara
,
Y.
, “
The structure of space and the formalism of relativistic quantum theory, I-IV
,”
J. Math. Phys.
4
,
87
(
1965
);
Ahmavaara
,
Y.
, “
The structure of space and the formalism of relativistic quantum theory, I-IV
,”
J. Math. Phys.
6
,
220
(
1965
);
Ahmavaara
,
Y.
, “
The structure of space and the formalism of relativistic quantum theory, I-IV
,”
J. Math. Phys.
7
,
197
(
1966
);
Ahmavaara
,
Y.
, “
The structure of space and the formalism of relativistic quantum theory, I-IV
,”
J. Math. Phys.
7
,
201
(
1966
).
3.
Beltrametti
,
E. G.
and
Blasi
,
A. A.
, “
Dirac spinors, covariant currents and the Lorentz group over a finite field
,”
Nuovo Cimento A
55
,
301
(
1968
).
4.
Beltrametti
,
E. G.
and
Blasi
,
A.
, “
Rotation and Lorentz groups in a finite geometry
,”
J. Math. Phys.
9
,
1027
(
1968
).
5.
Blasi
,
A. A.
,
Gallone
,
F.
,
Zecca
,
A.
, and
Gorini
,
V.
, “
A causality group in finite space-time
,”
Nuovo Cimento Soc. Ital. Fis., A
10A
,
19
(
1972
).
6.
Coish
,
H. R.
, “
Elementary particles in a finite world geometry
,”
Phys. Rev.
114
,
383
(
1959
).
7.
Dickson
,
L. E.
, “
Determination of the structure of all linear homogeneous groups in a Galois field which are defined by a quadratic invariant
,”
Am. J. Math.
21
,
193
(
1899
).
8.
Joos
,
H.
, “
Group-theoretical models of local-field theories
,”
J. Math. Phys.
5
,
155
(
1964
).
9.
Järnefelt
,
G.
, “
Reflections on a finite approximation to euclidean geometry. Physical and astronomical prospects
,”
Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys.
96
,
1
(
1951
).
10.
Järnefelt
,
G.
and
Kustaanheimo
,
P.
, “
An observation on finite geometries
,” in
Proceedings Skandinaviske Matematikerkongress i Trondheim
,
1949
(unpublished), pp.
166
182
.
11.
Kustaanheimo
,
P.
, “
A note on a finite approximation of the euclidean plane geometry
,”
Comment. Phys.-Math. Soc. Sc. Fenn. XV.
19,
1
(
1950
).
12.
Kustaanheimo
,
P.
, “
On the fundamental prime of a finite world
,”
Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys.
129
,
1
(
1952
).
13.
Moretti
,
V.
, “
The interplay of the polar decomposition theorem and the Lorentz group
,”
Lecture Notes of Seminario Interdisciplinare di Matematica
5–153 (
2006
).
14.
Nambu
,
Y.
, in
Field Theory and Quantum Statistics
, edited by
J. A.
Batalin
(
Institute of Physics
,
Barkshire
,
1987
), pp.
625
636
.
15.
Shapiro
,
I. S.
, “
Weak interactions in the theory of elementary particles with finite space
,”
Nucl. Phys.
21
,
474
(
1960
).
16.
Urbantke
,
H. K.
, “
Lorentz transformations from reflections: some applications
,”
Found. Phys. Lett.
16
,
111
(
2003
).
17.
Yahia
,
Q. A. M.
, “
Leptonic decays in finite space
,”
Nuovo Cimento
2
,
441
(
1963
).
You do not currently have access to this content.