Finite Lorentz groups acting on four-dimensional vector spaces coordinatized by finite fields with a prime number of elements are represented as homomorphic images of countable, rational subgroups of the Lorentz group acting on real four-dimensional space-time. Bounded subsets of the real Lorentz group are retractable with arbitrary precision to finite subsets of such rational subgroups. These finite retracts correspond, via local isomorphisms, to well-behaved subsets of Lorentz groups over finite fields. This establishes a relationship of approximation between the real Lorentz group and Lorentz groups over very large finite fields.
REFERENCES
1.
Ahmavaara
, Y.
, “Relativistic quantum theory as a group problem, II. World geometry and the elementary particles
,” Ann. Acad. Sci. Fenn., Ser. A6
95 (1962
).2.
Ahmavaara
,Y.
, “The structure of space and the formalism of relativistic quantum theory, I-IV
,” J. Math. Phys.
4
, 87
(1965
);Ahmavaara
,Y.
, “The structure of space and the formalism of relativistic quantum theory, I-IV
,” J. Math. Phys.
6
, 220
(1965
);Ahmavaara
,Y.
, “The structure of space and the formalism of relativistic quantum theory, I-IV
,” J. Math. Phys.
7
, 197
(1966
);Ahmavaara
, Y.
, “The structure of space and the formalism of relativistic quantum theory, I-IV
,” J. Math. Phys.
7
, 201
(1966
).3.
Beltrametti
, E. G.
and Blasi
, A. A.
, “Dirac spinors, covariant currents and the Lorentz group over a finite field
,” Nuovo Cimento A
55
, 301
(1968
).4.
Beltrametti
, E. G.
and Blasi
, A.
, “Rotation and Lorentz groups in a finite geometry
,” J. Math. Phys.
9
, 1027
(1968
).5.
Blasi
, A. A.
, Gallone
, F.
, Zecca
, A.
, and Gorini
, V.
, “A causality group in finite space-time
,” Nuovo Cimento Soc. Ital. Fis., A
10A
, 19
(1972
).6.
Coish
, H. R.
, “Elementary particles in a finite world geometry
,” Phys. Rev.
114
, 383
(1959
).7.
Dickson
, L. E.
, “Determination of the structure of all linear homogeneous groups in a Galois field which are defined by a quadratic invariant
,” Am. J. Math.
21
, 193
(1899
).8.
Joos
, H.
, “Group-theoretical models of local-field theories
,” J. Math. Phys.
5
, 155
(1964
).9.
Järnefelt
, G.
, “Reflections on a finite approximation to euclidean geometry. Physical and astronomical prospects
,” Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys.
96
, 1
(1951
).10.
Järnefelt
, G.
and Kustaanheimo
, P.
, “An observation on finite geometries
,” in Proceedings Skandinaviske Matematikerkongress i Trondheim
, 1949
(unpublished), pp. 166
–182
.11.
Kustaanheimo
, P.
, “A note on a finite approximation of the euclidean plane geometry
,” Comment. Phys.-Math. Soc. Sc. Fenn. XV.
19, 1
(1950
).12.
Kustaanheimo
, P.
, “On the fundamental prime of a finite world
,” Ann. Acad. Sci. Fenn., Ser. A1: Math.-Phys.
129
, 1
(1952
).13.
Moretti
, V.
, “The interplay of the polar decomposition theorem and the Lorentz group
,” Lecture Notes of Seminario Interdisciplinare di Matematica
5–153 (2006
).14.
Nambu
, Y.
, in Field Theory and Quantum Statistics
, edited by J. A.
Batalin
(Institute of Physics
, Barkshire
, 1987
), pp. 625
–636
.15.
Shapiro
, I. S.
, “Weak interactions in the theory of elementary particles with finite space
,” Nucl. Phys.
21
, 474
(1960
).16.
Urbantke
, H. K.
, “Lorentz transformations from reflections: some applications
,” Found. Phys. Lett.
16
, 111
(2003
).17.
Yahia
, Q. A. M.
, “Leptonic decays in finite space
,” Nuovo Cimento
2
, 441
(1963
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.