Each of the local isometry groups arising in three-dimensional (3d) gravity can be viewed as a group of unit (split) quaternions over a ring which depends on the cosmological constant. In this paper we explain and prove this statement and use it as a unifying framework for studying Poisson structures associated with the local isometry groups. We show that, in all cases except for the case of Euclidean signature with positive cosmological constant, the local isometry groups are equipped with the Poisson–Lie structure of a classical double. We calculate the dressing action of the factor groups on each other and find, among others, a simple and unified description of the symplectic leaves of SU(2) and SL(2,R). We also compute the Poisson structure on the dual Poisson–Lie groups of the local isometry groups and on their Heisenberg doubles; together, they determine the Poisson structure of the phase space of 3d gravity in the so-called combinatorial description.

1.
S.
Deser
,
R.
Jackiw
, and
G.
’t Hooft
,
Ann. Phys. (N.Y.)
152
,
220
(
1984
).
2.
S.
Deser
and
R.
Jackiw
,
Ann. Phys. (N.Y.)
153
,
405
(
1984
).
3.
S.
Carlip
, Quantum Gravity in 2+1 Dimensions (
Cambridge University
,
Cambridge
,
1998
).
4.
A.
Achucarro
and
P.
Townsend
,
Phys. Lett. B
180
,
89
(
1986
).
6.
C.
Meusburger
,
Commun. Math. Phys.
273
,
705
(
2007
).
7.
V. V.
Fock
and
A. A.
Rosly
, “
Poisson structures on moduli of flat connections on Riemann surfaces andr-matrices
,”
ITEP
Preprint No. 72-92,
1992
;
see also e-print arXiv:math.QA/9802054.
8.
A. Yu.
Alekseev
and
A. Z.
Malkin
,
Commun. Math. Phys.
169
,
99
(
1995
).
9.
A. Yu.
Alekseev
and
V.
Schomerus
,
Duke Math. J.
85
,
447
(
1996
).
10.
B. J.
Schroers
, in
Quantization of Singular Symplectic Quotients
, edited by
N. P.
Landsman
,
M.
Pflaum
, and
M.
Schlichenmaier
,
Progress in Mathematics
Vol.
198
(
Birkhäuser
,
Basel
,
2001
), pp.
307
328
.
11.
E.
Buffenoir
,
K.
Noui
, and
P.
Roche
,
Class. Quantum Grav.
19
,
4953
(
2002
).
12.
C.
Meusburger
and
B. J.
Schroers
,
Class. Quantum Grav.
20
,
2193
(
2003
).
13.
C.
Meusburger
and
B. J.
Schroers
,
Adv. Theor. Math. Phys.
7
,
1003
(
2004
).
14.
V.
Chari
and
A.
Pressley
,
A Guide to Quantum Groups
(
Cambridge University
,
Cambridge
,
1994
).
15.
M. A.
Semenov-Tian-Shansky
,
Publ. Res. Inst. Math. Sci.
21
,
1237
(
1985
).
16.
S.
Majid
,
Foundations of Quantum Group Theory
(
Cambridge University
,
Cambridge
,
1995
).
17.
E.
Study
,
Geometrie der Dynamen
(
Tuebner
,
Leipzig
,
1903
).
18.
J.
Cockle
,
London, Edinburgh Dublin Philos. Mag. J. Sci.
333
,
345
(
1848
).
19.
H. B.
Lawson
and
M. -L.
Michelson
,
Spin Geometry
(
Princeton University
,
Princeton
,
1989
).
20.
R. S.
Ward
and
R. O.
Wells
,
Twistor Geometry and Field Theory
(
Cambridge University
,
Cambridge
,
1990
).
21.
A. I.
Kostrikin
and
Yu. I.
Manin
,
Linear Algebra and Geometry
(
Gordon and Breach
,
Amsterdam
,
1997
).
22.
J.
Cockle
,
Philos. Mag.
35
,
434
(
1849
).
23.
W.
Klingenberg
,
Lineare Algebra und Geometrie
(
Springer-Verlag
,
Heidelberg
,
1984
).
24.
R.
Bendetti
and
F.
Bonsante
, e-print arXiv:math/0508485v3.
25.
Y.
Kosmann-Schwarzbach
,
Lect. Notes Phys.
638
,
107
(
2004
).
You do not currently have access to this content.