The existence and uniqueness theorems for functional right-left delay and left-right advanced fractional functional differential equations with bounded delay and advance, respectively, are proved. The continuity with respect to the initial function for these equations is also proved under some Lipschitz kind conditions. The Q-operator is used to transform the delay-type equation to an advanced one and vice versa. An example is given to clarify the results.

1.
S. G.
Samko
,
A. A.
Kilbasand
, and
O. I.
Marichev
,
Fractional Integrals and Derivatives—Theory and Applications
(
Gordon and Breach
,
Linghorne, PA
,
1993
).
2.
I.
Podlubny
,
Fractional Differential Equations
(
Academic
,
San Diego, CA
,
1999
).
3.
A.
Kilbas
,
H. M.
Srivastava
, and
J. J.
Trujillo
,
Theory and Applications of Fractional Differential Equations
,
Mathematics Studies
Vol.
204
(
North-Holland
,
Amsterdam
,
2006
).
4.
G. M.
Zaslavsky
,
Hamiltonian Chaos and Fractional Dynamics
(
Oxford University Press
,
Oxford
,
2005
).
5.
R. L.
Magin
,
Fractional Calculus in Bioengineering
(
Begell
,
Connecticut
,
2006
).
6.
F.
Mainardi
,
Chaos, Solitons Fractals
7
,
1461
(
1996
).
7.
A. A.
Kilbas
,
M.
Rivero
, and
J. J.
Trujillo
,
Fractional Calculus Appl. Anal.
6
,
363
(
2003
).
8.
M. F.
Silva
,
J. A. T.
Machado
, and
A. M.
Lopes
,
Robotica
23
,
595
(
2005
).
9.
O. P.
Agrawal
and
D.
Baleanu
,
J. Vib. Control
13
,
1269
(
2007
).
10.
E.
Scalas
,
Chaos, Solitons Fractals
34
,
33
(
2007
).
11.
K.
Diethelm
,
N. J.
Ford
,
A. D.
Freed
, and
Y.
Luchko
,
Comput. Methods Appl. Mech. Eng.
194
,
743
(
2005
).
12.
N.
Heymans
and
I.
Podlubny
,
Rheol. Acta
45
,
765
(
2006
).
13.
F.
Riewe
,
Phys. Rev. E
53
,
1890
(
1996
).
14.
M.
Klimek
,
Czech. J. Phys.
51
,
1348
(
2001
).
15.
O. P.
Agrawal
,
J. Math. Anal. Appl.
272
,
368
(
2002
).
16.
D.
Baleanu
,
Signal Process.
86
,
2632
(
2006
).
17.
S. I.
Muslih
and
D.
Baleanu
,
Czech. J. Phys.
55
,
633
(
2005
).
18.
D.
Baleanu
and
S. I.
Muslih
,
Phys. Scr.
72
,
119
(
2005
).
19.
D.
Baleanu
,
S. I.
Muslih
, and
K.
Tas
,
J. Math. Phys.
47
,
103503
(
2006
).
20.
E. M.
Rabei
,
K. I.
Nawafleh
,
R. S.
Hijjawi
,
S. I.
Muslih
, and
D.
Baleanu
,
J. Math. Anal. Appl.
327
,
891
(
2007
).
21.
S. I.
Muslih
and
D.
Baleanu
,
J. Math. Anal. Appl.
304
,
599
(
2005
).
22.
T. M.
Atanackovic
and
B.
Stankovic
,
Z. Angew. Math. Mech.
87
,
537
(
2007
).
23.
D.
Baleanu
and
J. J.
Trujillo
,
Nonlinear Dyn.
52
,
331
(
2008
).
24.
R. D.
Driver
,
Ordinary and Delay Differential Equations
,
Applied Mathematical Sciences
Vol.
20
(
Springer
,
Berlin
,
1977
).
25.
W.
Deng
,
C.
Li
, and
J.
Lu
,
Nonlinear Dyn.
48
,
409
(
2007
).
26.
T.
Maraaba (Abdeljawad)
,
F.
Jarad
, and
D.
Baleanu
, “
On the existence and the uniqueness theorem for fractional differential equations with bounded delay within Caputo derivatives
,”
Sci. China, Ser. A: Math., Phys., Astron.
(in press).
27.
I.
Podlubny
, personal communication (
11 October 2007
).
You do not currently have access to this content.