We consider linear transport in an anisotropic medium with velocity dependent cross sections σ(r,v,t) and scattering kernel P(r,vv,t). We introduce a scaling in terms of a small parameter ϵ, where the leading-order term describes an equilibrium in velocity space between collisions with a cross section that is an even function of v and scattering modes even-even and odd-odd in v and v. We show that the asymptotic solution of the transport equation leads to a diffusion equation with a drift term with an error in ϵ2 and derive consistent initial and boundary conditions from the analysis of the initial and boundary layers. The analysis of the drift terms shows that they result from anisotropic interactions with the medium and also from streaming between neighboring but different equilibria. The restriction of our results to isotropic media yields back the Larsen–Keller diffusion equation, while the one-speed form reduces to the result obtained by Pomraning and Prinja [Ann. Nucl. Energy22, 159 (1995)] for the particular case of isotropic cross sections with an “output” scattering kernel P(r,Ω,t).

1.
Computational Methods in Transport
, edited by
F.
Graziani
(
Springer
,
New York
,
2006
).
2.
3D Radiative Transfer in Cloudy Atmospheres
, edited by
A.
Marshak
and
A. B.
David
(
Springer
,
New York
,
2005
).
3.
B. J.
Hoenders
,
J. Opt. Soc. Am. A
14
,
262
(
1997
).
4.
P.
Nelson
,
Transp. Theory Stat. Phys.
24
,
383
(
1995
).
5.
G. I.
Bell
and
S.
Gladstone
,
Nuclear Reactor Theory
(
Van Nostrand Reinhold
,
New York
,
1971
).
6.
E. W.
Larsen
and
B.
Keller
,
J. Math. Phys.
15
,
75
(
1974
).
7.
G. J.
Habetler
and
B. J.
Matkowsky
,
J. Math. Phys.
16
,
846
(
1975
).
8.
E. W.
Larsen
,
J. Math. Phys.
15
,
299
(
1974
).
9.
E. W.
Larsen
and
J.
D’arruda
,
Phys. Rev. A
13
,
1933
(
1976
).
10.
E. W.
Larsen
,
SIAM J. Appl. Math.
33
,
427
(
1977
).
11.
G. C.
Pomraning
,
Transp. Theory Stat. Phys.
18
,
383
(
1989
).
12.
G. C.
Pomraning
,
Nucl. Sci. Eng.
112
,
239
(
1992
).
13.
B.
Ganapol
,
International Conference on Transport Theory
,
Albuquerque, New Mexico
, August
1991
(unpublished).
14.
E. W.
Larsen
,
Transp. Theory Stat. Phys.
13
,
599
(
1984
).
15.
M. M. R.
Williams
,
Ann. Nucl. Energy
19
,
791
(
1992
).
16.
J. S.
Cassell
and
M. M. R.
Williams
,
Ann. Nucl. Energy
19
,
403
(
1992
).
17.
E. W.
Larsen
and
M.
Williams
,
Nucl. Sci. Eng.
65
,
290
(
1978
).
18.
G. C.
Pomraning
and
A. K.
Prinja
,
Ann. Nucl. Energy
22
,
159
(
1995
).
19.
K.
Yosida
,
Functional Analysis
(
Springer-Verlag
,
Berlin
,
1974
).
20.
F.
Malvagi
and
G. C.
Pomraning
,
J. Math. Phys.
32
,
805
(
1991
).
21.
S.
Chandrasekhar
,
Radiative Transfer
(
Dover
,
New York
,
1960
).
22.
G. C.
Pomraning
,
J. Quant. Spectrosc. Radiat. Transf.
44
,
317
(
1990
).
23.
R.
Dautray
and
J. -L.
Lions
,
Mathematical Analysis and Numerical Methods for Science and Technology
(
Springer
,
New Jersey
,
2000
).
24.
M.
Mokhtar-Kharroubi
,
Mathematical Topics in Neutron Transport Theory
(
World Scientific
,
Singapore
,
1997
).
25.
B.de.
Pagter
,
Math. Z.
192
,
149
(
1986
).
You do not currently have access to this content.