We investigate the strengths and limitations of the Spekkens toy model, which is a local hidden variable model that replicates many important properties of quantum dynamics. First, we present a set of five axioms that fully encapsulate Spekkens’ toy model. We then test whether these axioms can be extended to capture more quantum phenomena by allowing operations on epistemic as well as ontic states. We discover that the resulting group of operations is isomorphic to the projective extended Clifford group for two qubits. This larger group of operations results in a physically unreasonable model; consequently, we claim that a relaxed definition of valid operations in Spekkens’ toy model cannot produce an equivalence with the Clifford group for two qubits. However, the new operations do serve as tests for correlation in a two toy bit model, analogous to the well known Horodecki criterion for the separability of quantum states.

1.
R. W.
Spekkens
,
Phys. Rev. A
75
,
032110
(
2007
).
2.
A.
Zeilinger
,
Found. Phys.
29
,
631
(
1999
).
3.
C. A.
Fuchs
, e-print arXiv:quant-ph/0205039.
4.
R.
Clifton
,
J.
Bub
, and
H.
Halvorson
,
Found. Phys.
33
,
1561
(
2003
).
5.
K. A.
Kirkpatrick
,
Found. Phys. Lett.
16
,
199
(
2003
).
6.
M.
Horodecki
,
P.
Horodecki
, and
R.
Horodecki
,
Phys. Lett. A
223
,
1
(
1996
).
7.
M. A.
Nielsen
and
I. L.
Chuang
,
Quantum Computation and Quantum Information
(
Cambringe University Press
,
New York
,
2000
).
8.
H.
Coxeter
,
Regular Polytopes
(
Dover
,
New York
,
1973
).
9.
I.
Białynicki-Birula
and
J.
Mycielski
,
Ann. Phys. (N.Y.)
100
,
62
(
1976
).
10.
11.
S.
Weinberg
,
Ann. Phys. (N.Y.)
194
,
336
(
1989
).
12.
W.
Itano
,
J.
Bergquist
,
J.
Bollinger
,
J.
Gilligan
,
D.
Heinzen
,
F.
Moore
,
M.
Raizen
, and
D.
Wineland
,
Hyperfine Interact.
78
,
211
(
1993
).
14.
R. A.
Calderbank
,
E. M.
Rains
,
P. W.
Shor
, and
N. J. A.
Sloane
,
IEEE Trans. Inf. Theory
44
,
1369
(
1998
);
15.
M.
van den Nest
, Ph.D. thesis,
Katholieke Universiteit Leuven
,
2005
.
16.
D. M.
Appleby
,
J. Math. Phys.
46
,
052107
(
2005
).
17.
GAP is an open source tool for discrete computational algebra http://www.gap-system.org/.
You do not currently have access to this content.