Let be the Epstein zeta function defined as the meromorphic continuation of the function to the complex plane. We show that for fixed , the function as a function of with fixed has a unique minimum at the point . When is fixed, the function can be shown to be a convex function of any of the variables . These results are then applied to the study of the sign of when is in the critical range . It is shown that when , as a function of can be both positive and negative for every . When , there are some open subsets of , where is positive for all . By regarding as a function of , we find that when , the generalized Riemann hypothesis is false for all .
REFERENCES
1.
P.
Epstein
, Math. Ann.
56
, 615
(1903
).2.
3.
4.
5.
6.
A.
Selberg
, Report of the Institute in Theory of Numbers
(University of Colorado
, Boulder, CO
, 1959
), pp. 207
–210
.7.
8.
9.
E.
Elizalde
, S. D.
Odintsov
, A.
Romeo
, A. A.
Bytsenko
, and S.
Zerbini
, Zeta Regularization Techniques with Applications
(World Scientific
, River Edge, NJ
, 1994
).10.
E.
Elizalde
, Ten Physical Applications of Spectral Zeta Functions
(Springer-Verlag
, Berlin
, 1995
).11.
K.
Kirsten
, Spectral Functions in Mathematics and Physics
(Chapman & Hall
, London
/CRC
, Boca Raton, FL
, 2002
).12.
13.
D. J.
Toms
, Phys. Rev. D
21
, 2805
(1980
).14.
G.
Denardo
and E.
Spallucci
, Nucl. Phys. B
169
, 514
(1980
).15.
A.
Actor
, Class. Quantum Grav.
7
, 663
(1990
).16.
K.
Kirsten
, J. Phys. A
26
, 2421
(1993
).17.
E.
Elizalde
and K.
Kirsten
, J. Math. Phys.
35
, 1260
(1994
).18.
S. C.
Lim
and L. P.
Teo
, J. Phys. A: Math. Theor.
41
, 145403
(2008
).19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
E. V.
Orlovskaya
, Vestnik S.-Peterburg. Univ. Mat. Mekh. Astronom.
149, No. 3, 23
(1994
).38.
39.
40.
41.
J.
Steuding
, Math. Ann.
333
, 689
(2005
).42.
P.
Sarnak
and A.
Strömbergsson
, Invent. Math.
165
, 115
(2006
).43.
S.
Chowla
and A.
Selberg
, Proc. Natl. Acad. Sci. U.S.A.
35
, 371
(1949
).44.
45.
I. S.
Gradshteyn
and I. M.
Ryzhik
, Table of Integrals, Series, and Products
(Academic
, San Diego, CA
, 2000
).46.
© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.