The derivatives to any order of the confluent hypergeometric (Kummer) function F=F11(a,b,z) with respect to the parameter a or b are investigated and expressed in terms of generalizations of multivariable Kampé de Fériet functions. Various properties (reduction formulas, recurrence relations, particular cases, and series and integral representations) of the defined hypergeometric functions are given. Finally, an application to the two-body Coulomb problem is presented: the derivatives of F with respect to a are used to write the scattering wave function as a power series of the Sommerfeld parameter.

1.
A.
Erdelyi
,
W.
Magnus
,
F.
Oberhettinger
, and
F. G.
Tricomi
,
Higher Trascendental Functions
(
McGraw-Hill
,
New York
,
1953
), Vols.
I–III
.
2.
L. J.
Slater
,
Confluent Hypergeometric Functions
(
Cambridge University Press
,
London
,
1960
).
3.
H.
Buchholz
,
The Confluent Hypergeometric Function
(
Springer-Verlag
,
Berlin
,
1969
).
4.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
(
Pergamon
,
Oxford
,
1965
).
5.
C. H.
Greene
,
A. R. P.
Rau
, and
U.
Fano
,
Phys. Rev. A
26
,
2441
(
1982
).
6.
A.
Dzieciol
,
S.
Yngve
, and
P. O.
Fröman
,
J. Math. Phys.
40
,
6145
(
1999
).
7.
C. R.
Garibotti
,
G.
Gasaneo
, and
F. D.
Colavecchia
,
Phys. Rev. A
62
,
022710
(
2000
).
8.
L. U.
Ancarani
and
M. C.
Chidichimo
,
J. Phys. B
37
,
4339
(
2004
).
9.
H.
van Haeringen
,
Charged Particle Interactions
(
Coulomb
,
Leyden
,
1985
).
10.
Y. E.
Kim
and
A. L.
Zubarev
,
Phys. Rev. A
56
,
521
(
1997
).
11.
12.
G.
Gasaneo
and
F. D.
Colavecchia
,
J. Phys. A
36
,
8443
(
2003
).
13.
B. H.
Bransden
and
C. J.
Joachain
,
Physics of Atoms and Molecules
, 2nd ed. (
Prentice Hall
,
Englewood Cliffs, NJ
,
2003
), Chap. 13.
14.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1972
).
15.
J.
Abad
and
J.
Sesma
,
Comput. Phys. Commun.
156
,
13
(
2003
).
16.
A. W.
Babister
,
Transcendental Functions Satisfying Nonhomogeneous Linear Differential Equations
(
Macmillan
,
New York
,
1967
).
17.
H. M.
Srivastava
and
H. L.
Manocha
,
A Treatise on Generating Functions
(
Ellis Horwood
,
Chichester
,
1978
).
19.
P.
Appell
and
J.
Kampé de Feriet
,
Funtions Hypergéométriques et Hypershériques; Polynomes d’Hermie
(
Gauthier-Villars
,
Paris
,
1926
).
20.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Table of Integrals, Series, and Products
(
Academic
,
New York
,
1994
).
You do not currently have access to this content.