We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian BF, Chern–Simons, and two-dimensional Yang–Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss’ and the second Milnor’s invariant for links in S3, and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.

1.
Axelrod
,
S.
and
Singer
,
I.
, in
Proceedings of the 20th DGM Conference
, edited by
S.
Catto
and
A.
Rocha
(
World Scientific
,
Singapore
,
1992
), pp.
3
45
.
2.
Baez
,
J.
and
Dolan
,
J.
, in
Mathematics Unlimited—2001 and Beyond
, edited by
B.
Enqquisb
and
W.
Schmid
(
Springer
,
New York
,
2001
), pp.
29
50
.
3.
Baez
,
J.
and
Dolan
,
J.
, in
Higher Category Theory
,
Contemporary Mathematics
Vol.
230
, edited by
E.
Getzler
and
M.
Kapranov
(
American Mathematical Society
,
Providence
,
1998
), pp.
1
36
.
4.
Balachandran
,
A.
,
Borchardt
,
M.
, and
Stern
,
A.
, “
Lagrangian, and Hamiltonian descriptions of Yang-Mills particles
,”
Phys. Rev. D
17
,
3247
(
1978
).
5.
Bergeron
,
F.
,
Labelle
,
G.
, and
Leroux
,
P.
,
Combinatorial Species and Tree-Like Structures
(
Cambridge University Press
,
Cambridge
,
1998
).
6.
Blandín
,
H.
and
Díaz
,
R.
, “
On the combinatorics of hypergeometric functions
,”
Adv. Stud. Contemp. Math.
14
,
153
(
2007
).
7.
Blandín
,
H.
and
Díaz
,
R.
, “
Rational combinatorics
,”
Adv. Appl. Math.
40
,
107
(
2008
).
8.
Bott
,
R.
and
Taubes
,
C.
, “
On the self-linking of knots
,”
J. Math. Phys.
35
,
5247
(
1994
).
9.
Cattaneo
,
A.
,
Froehlich
,
J.
, and
Pedrini
,
B.
, “
Topological field theory interpretation of string topology
,”
Commun. Math. Phys.
240
,
397
(
2003
).
10.
Chas
,
M.
and
Sullivan
,
D.
, e-print arXiv:math.CT/0509674.
11.
Connes
,
A.
and
Kreimer
,
D.
, “
Renormalization in quantum field theory and the Riemann-Hilbert problem I
,”
Commun. Math. Phys.
210
,
249
(
2000
).
12.
Crane
,
L.
and
Yetter
,
D.
, “
Examples of categorification
,”
Cah. Topol. Geom. Differ.
39
,
3
(
1998
).
13.
Diaz
,
R.
,
Fuenmayor
,
E.
, and
Leal
,
L.
, “
Surface-invariants in 2D classical Yang-Mills theory
,”
Phys. Rev. D
73
,
065012
(
2006
).
14.
Díaz
,
R.
and
Pariguan
,
E.
, e-print arXiv: math.CT/0509674.
15.
Dijkgraff
,
R.
,
Introduction to Topological Field Theory
, in
String Theory, Gauge Theory and Quantum Gravity
, Trieste Spring School and Workshop 1993 (
World Scientific
,
Singapore
,
1994
), pp.
189
227
.
16.
Fukaya
,
K.
,
Geometry and Physics of Branes
,
Series in High Energy Physics Cosmology Gravitation
(
IOP
,
Bristol
,
2003
), pp.
121
209
.
17.
Griffiths
,
P.
and
Harris
,
J.
,
Principles of Algebraic Geometry
(
Wiley
,
New York
,
1978
).
18.
Gugenheim
,
V.
,
Lambe
,
L.
, and
Stasheff
,
J.
, “
Perturbation theory in differential homological algebra. II
,”
Ill. J. Math.
35
,
357
(
1991
).
19.
Kajiura
,
H.
and
Stasheff
,
J.
, “
Homotopy algebras inspired by classical open-closed string field theory
,”
Commun. Math. Phys.
263
,
553
(
2006
).
20.
Kauffman
,
L.
and
Sóstenes
,
L.
,
Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds
(
Princeton University Press
,
Princeton
,
1994
).
21.
Khovanov
,
M.
, “
A categorification of Jones polynomial
,”
Duke Math. J.
143
,
288
(
1986
).
22.
Kontsevich
,
M.
and
Soibelman
,
Y.
,
Simplectic Geometry and Mirror Symmetry
(
World Scientific
,
New Jersey
,
2001
), pp.
203
263
.
23.
Leal
,
L.
, “
Link invariants from classical Chern-Simons theory
,”
Phys. Rev. D
66
,
125007
(
2002
).
24.
Leal
,
L.
, “
Classical diffeomorphism invariant theories and linking numbers
,”
Mod. Phys. Lett. A
7
,
541
(
1992
).
25.
Milnor
,
J.
, “
Link groups
,”
Ann. Math.
59
,
177
(
1954
).
26.
Monastyrsky
,
M.
and
Retakh
,
V.
, “
Topology of linked defects in condensed matter
,”
Commun. Math. Phys.
103
,
445
(
1986
).
27.
Reshetikhin
,
N.
and
Turaev
,
V.
, “
Invariants of three manifolds via link polynomials and quantum groups
,”
Invent. Math.
103
,
547
(
1991
).
28.
Rozansky
,
L.
, “
Reshetikhin’s formula for Jones polynomial of a link: Feynman diagrams and Milnor’s linking number
,”
J. Math. Phys.
35
,
5219
(
1994
).
29.
Schwarz
,
A.
, “
A-model and generalized Chern-Simons theory
,”
Phys. Lett. B
620
,
180
(
2005
).
30.
Stasheff
,
J.
, “
Homotopy associativity of H-spaces I
,”
Trans. Am. Math. Soc.
108
,
275
(
1963
).
31.
Stasheff
,
J.
, “
Homotopy associativity of H-spaces II
,”
Trans. Am. Math. Soc.
108
,
293
(
1963
).
32.
Witten
,
E.
, “
Quantum field theory and the Jones polynomial
,”
Commun. Math. Phys.
121
,
351
(
1989
).
33.
Wong
,
S.
, “
Field and particle equations for the classical Yang-Mills field and particles with isotopic spin
,”
Nuovo Cimento A
65
,
689
(
1970
).
34.
Zhou
,
J.
, “
Hodge theory and A structures on cohomology
,”
Int. Math. Res. Notices
2
,
71
(
2000
).
You do not currently have access to this content.