We introduce a method that generates invariant functions from perturbative classical field theories depending on external parameters. By applying our methods to several field theories such as Abelian , Chern–Simons, and two-dimensional Yang–Mills theory, we obtain, respectively, the linking number for embedded submanifolds in compact varieties, the Gauss’ and the second Milnor’s invariant for links in , and invariants under area-preserving diffeomorphisms for configurations of immersed planar curves.
REFERENCES
1.
Axelrod
, S.
and Singer
, I.
, in Proceedings of the 20th DGM Conference
, edited by S.
Catto
and A.
Rocha
(World Scientific
, Singapore
, 1992
), pp. 3
–45
.2.
Baez
, J.
and Dolan
, J.
, in Mathematics Unlimited—2001 and Beyond
, edited by B.
Enqquisb
and W.
Schmid
(Springer
, New York
, 2001
), pp. 29
–50
.3.
Baez
, J.
and Dolan
, J.
, in Higher Category Theory
, Contemporary Mathematics
Vol. 230
, edited by E.
Getzler
and M.
Kapranov
(American Mathematical Society
, Providence
, 1998
), pp. 1
–36
.4.
Balachandran
, A.
, Borchardt
, M.
, and Stern
, A.
, “Lagrangian, and Hamiltonian descriptions of Yang-Mills particles
,” Phys. Rev. D
17
, 3247
(1978
).5.
Bergeron
, F.
, Labelle
, G.
, and Leroux
, P.
, Combinatorial Species and Tree-Like Structures
(Cambridge University Press
, Cambridge
, 1998
).6.
Blandín
, H.
and Díaz
, R.
, “On the combinatorics of hypergeometric functions
,” Adv. Stud. Contemp. Math.
14
, 153
(2007
).7.
Blandín
, H.
and Díaz
, R.
, “Rational combinatorics
,” Adv. Appl. Math.
40
, 107
(2008
).8.
Bott
, R.
and Taubes
, C.
, “On the self-linking of knots
,” J. Math. Phys.
35
, 5247
(1994
).9.
Cattaneo
, A.
, Froehlich
, J.
, and Pedrini
, B.
, “Topological field theory interpretation of string topology
,” Commun. Math. Phys.
240
, 397
(2003
).10.
11.
Connes
, A.
and Kreimer
, D.
, “Renormalization in quantum field theory and the Riemann-Hilbert problem I
,” Commun. Math. Phys.
210
, 249
(2000
).12.
Crane
, L.
and Yetter
, D.
, “Examples of categorification
,” Cah. Topol. Geom. Differ.
39
, 3
(1998
).13.
Diaz
, R.
, Fuenmayor
, E.
, and Leal
, L.
, “Surface-invariants in 2D classical Yang-Mills theory
,” Phys. Rev. D
73
, 065012
(2006
).14.
15.
Dijkgraff
, R.
, Introduction to Topological Field Theory
, in String Theory, Gauge Theory and Quantum Gravity
, Trieste Spring School and Workshop 1993 (World Scientific
, Singapore
, 1994
), pp. 189
–227
.16.
Fukaya
, K.
, Geometry and Physics of Branes
, Series in High Energy Physics Cosmology Gravitation
(IOP
, Bristol
, 2003
), pp. 121
–209
.17.
Griffiths
, P.
and Harris
, J.
, Principles of Algebraic Geometry
(Wiley
, New York
, 1978
).18.
Gugenheim
, V.
, Lambe
, L.
, and Stasheff
, J.
, “Perturbation theory in differential homological algebra. II
,” Ill. J. Math.
35
, 357
(1991
).19.
Kajiura
, H.
and Stasheff
, J.
, “Homotopy algebras inspired by classical open-closed string field theory
,” Commun. Math. Phys.
263
, 553
(2006
).20.
Kauffman
, L.
and Sóstenes
, L.
, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds
(Princeton University Press
, Princeton
, 1994
).21.
Khovanov
, M.
, “A categorification of Jones polynomial
,” Duke Math. J.
143
, 288
(1986
).22.
Kontsevich
, M.
and Soibelman
, Y.
, Simplectic Geometry and Mirror Symmetry
(World Scientific
, New Jersey
, 2001
), pp. 203
–263
.23.
Leal
, L.
, “Link invariants from classical Chern-Simons theory
,” Phys. Rev. D
66
, 125007
(2002
).24.
Leal
, L.
, “Classical diffeomorphism invariant theories and linking numbers
,” Mod. Phys. Lett. A
7
, 541
(1992
).25.
Milnor
, J.
, “Link groups
,” Ann. Math.
59
, 177
(1954
).26.
Monastyrsky
, M.
and Retakh
, V.
, “Topology of linked defects in condensed matter
,” Commun. Math. Phys.
103
, 445
(1986
).27.
Reshetikhin
, N.
and Turaev
, V.
, “Invariants of three manifolds via link polynomials and quantum groups
,” Invent. Math.
103
, 547
(1991
).28.
Rozansky
, L.
, “Reshetikhin’s formula for Jones polynomial of a link: Feynman diagrams and Milnor’s linking number
,” J. Math. Phys.
35
, 5219
(1994
).29.
Schwarz
, A.
, “A-model and generalized Chern-Simons theory
,” Phys. Lett. B
620
, 180
(2005
).30.
Stasheff
, J.
, “Homotopy associativity of -spaces I
,” Trans. Am. Math. Soc.
108
, 275
(1963
).31.
Stasheff
, J.
, “Homotopy associativity of -spaces II
,” Trans. Am. Math. Soc.
108
, 293
(1963
).32.
Witten
, E.
, “Quantum field theory and the Jones polynomial
,” Commun. Math. Phys.
121
, 351
(1989
).33.
Wong
, S.
, “Field and particle equations for the classical Yang-Mills field and particles with isotopic spin
,” Nuovo Cimento A
65
, 689
(1970
).34.
Zhou
, J.
, “Hodge theory and structures on cohomology
,” Int. Math. Res. Notices
2
, 71
(2000
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.