The rule 150 cellular automaton is a remarkable discrete dynamical system, as it shows 1fα spectra if started from a single seed [J. Nagler and J. C. Claussen, Phys. Rev. E71, 067103 (2005)]. Despite its simplicity, a feasible solution for its time behavior is not obvious. Its self-similarity does not follow a one-step iteration like other elementary cellular automata. Here it is shown how its time behavior can be solved as a two-step vectorial, or string, iteration, which can be viewed as a generalization of Fibonacci iteration generating the time series from a sequence of vectors of increasing length. This allows us to compute the total activity time series more efficiently than by simulating the whole spatiotemporal process or even by using the closed expression. The results are further extended to the generalization of rule 150 to the two-dimensional case and to Bethe lattices and the relation to corresponding integer sequences is discussed.

1.
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
,
Phys. Rev. Lett.
59
,
381
(
1987
),
[PubMed]
P.
Bak
,
C.
Tang
, and
K.
Wiesenfeld
,
Phys. Rev. A
38
,
364
(
1988
).
2.
H. J.
Jensen
,
Self-organized Criticality
(
Cambridge University Press
,
Cambridge
,
1998
).
S.
Wolfram
,
Nature (London)
311
,
419
(
1984
).
4.
S.
Wolfram
,
Rev. Mod. Phys.
55
,
601
(
1983
).
5.
J.
Xu
and
A.
Hübler
,
Phys. Rev. B
67
,
184202
(
2003
).
6.
R.
Mosseri
, e-print arXiv:0801.2860.
7.
M.
Gardner
,
Sci. Am.
223
(
10
),
120
(
1970
).
8.
J. C.
Claussen
,
J.
Nagler
, and
H. G.
Schuster
,
Phys. Rev. E
70
,
032101
(
2004
).
9.
J.
Nagler
and
J. C.
Claussen
,
Phys. Rev. E
71
,
067103
(
2005
).
10.
C.
Tang
,
K.
Wiesenfeld
,
P.
Bak
,
S.
Coppersmith
, and
P.
Littlewood
,
Phys. Rev. Lett.
58
,
1161
(
1987
).
11.
Y.
Oono
and
M.
Kohmoto
,
Phys. Rev. Lett.
55
,
2927
(
1985
).
12.
Closed solution from generating functions: A straightforward expression for the time evolution of xnt by rule 150 for the initial condition of a single 1 at n=0 and t=0 is defined by the coefficients of Pt(x)(1+x+x2)t (Ref. 4), or Gegenbauer functions, and performs the mod2 operation afterward, i.e., Pt(x)=n=02tpn(t)xn and xnt=pn+t(t)mod2. From Pt(x), the coefficients can be extracted via the method of generating function, giving
Hovever contrary to the case of rule 90, generating the Sierpinski gasket, and where the cofficients of (1+x)t simply are the binomial coefficients, this does not lead to a closed expression for X(t) rule 150.
13.

The iteration for χ(n) on p. 614 in Ref. 4 seems to be a typograpical error.

14.
N. J. A.
Sloane
,
Not. Am. Math. Soc.
50
,
912
(
2003
).
15.
N. J. A.
Sloane
, OEIS Sequence A001045 (http://www.research.att.com/~njas/sequences/A001045).
16.

Of order O(t(logt)3), optimized O(tlogt); the spatial simulation is O(t2); iteration (10) is O(t) as the matrices are diagonal.

17.
G. W.
Grossmann
,
Fibonacci Quarterly
35.1
,
206
(
1997
).
18.
J. C.
Alexander
, The entropy of the Fibonacci code (
1989
) (available at http://www.cwru.edu/artsci/math/alexander/abstracts/fibabs.html).
19.
A. S.
Pikovsky
,
M. A.
Zaks
,
U.
Feudel
, and
J.
Kurths
,
Phys. Rev. E
52
,
285
(
1995
).
20.
M. A.
Zaks
,
A. S.
Pikovsky
, and
J.
Kurths
,
Phys. Rev. Lett.
77
,
4338
(
1996
).
21.
M. A.
Zaks
and
A. V.
Straube
,
Phys. Rev. Lett.
89
,
244101
(
2002
).
22.
N. J. A.
Sloane
, OEIS Sequence A000204 (http://www.research.att.com/~njas/sequences/A000204).
23.
N. H.
Packard
and
S.
Wolfram
,
J. Stat. Phys.
38
,
901
(
1985
).
24.
N. J. A.
Sloane
, OEIS Sequence A007483 (http://www.research.att.com/~njas/sequences/A007483).
25.
J. C.
Claussen
, OEIS Sequence A138276 (http://www.research.att.com/~njas/sequences/A138276).
26.
J. C.
Claussen
, OEIS Sequence A138277 (http://www.research.att.com/~njas/sequences/A138277).
27.
N.
Israeli
and
N.
Goldenfeld
,
Phys. Rev. Lett.
92
,
074105
(
2004
).
28.
V. C.
Barbosa
,
F. M. N.
Miranda
, and
M. C. M.
Agostini
,
Bull. Am. Astron. Soc.
32
,
44
(
2006
).
29.
M. T.
Matache
and
J.
Heidel
,
Phys. Rev. E
69
,
056214
(
2004
).
30.
M. T.
Matache
and
J.
Heidel
,
Phys. Rev. E
71
,
026232
(
2005
).
31.
T.
Kawaguchi
,
S.
Mineshige
,
M.
Machida
, and
R.
Matsumoto
,
Publ. Astron. Soc. Jpn.
52
,
98
(
2000
).
32.
D. P.
Ward
,
A. T.
Murray
, and
S. R.
Phinn
,
Comput. Environ. Urban Syst.
24
,
539
(
2000
).
33.
S. H. U.
Tezuka
and
M.
Fushimi
,
Contemp. Math.
168
,
363
(
1994
).
34.
P.
Barry
,
J. Integer Sequences
10,
07
4
(
2007
).
35.
A.
Burstein
,
S.
Kitaev
, and
T.
Mansour
, arXiv:math∕0310379.
36.
R. K.
Guy
and
W. O. J.
Moser
,
Fibonacci Quarterly
34,
152
(
1996
).
37.
M. A.
Nowak
and
R. M.
May
,
Nature (London)
359
,
826
(
1992
).
38.
K.
Lindgren
and
M.
Nordahl
,
Physica D
75
,
292
(
1994
).
39.
A. V. M.
Herz
,
J. Theor. Biol.
169
,
65
(
1994
).
40.
A.
Traulsen
and
J. C.
Claussen
,
Phys. Rev. E
70
,
046128
(
2004
).
41.
G.
Szabó
,
A.
Szolnoki
, and
G. A.
Sznaider
,
Phys. Rev. E
76
,
051921
(
2007
).
42.
G.
Szabo
and
G.
Fath
,
Phys. Rep.
446
,
97
(
2007
).
43.
B.
Drossel
, arXiv:0706.3351.
44.
A.
Szejka
and
B.
Drossel
,
Eur. Phys. J. B
56
,
373
(
2007
).
45.
C.
Marr
and
M. T.
Hütt
,
Physica A
354
,
641
(
2005
).
46.
K.
Klemm
and
S.
Bornholdt
,
Proc. Natl. Acad. Sci. U.S.A.
102
,
18414
(
2005
).
You do not currently have access to this content.