The non-imprisonment conditions on spacetimes are studied. It is proved that the non-partial imprisonment property implies the distinction property. Moreover, it is proven that feeble distinction, a property which stays between weak distinction and causality, implies non-total imprisonment. As a result the non-imprisonment conditions can be included in the causal ladder of spacetimes. Finally, totally imprisoned causal curves are studied in detail, and results concerning the existence and properties of minimal invariant sets are obtained.

1.
Beem
,
J. K.
, “
Conformal changes and geodesic completeness
,”
Commun. Math. Phys.
49
,
179
(
1976
).
2.
Beem
,
J. K.
,
Ehrlich
,
P. E.
, and
Easley
,
K. L.
,
Global Lorentzian Geometry
(
Dekker
,
New York
,
1996
).
3.
Engelking
,
R.
,
General Topology
(
Helderman
,
Berlin
,
1989
).
4.
Hartman
,
P.
,
Ordinary Differential Equations
(
Wiley
,
New York
,
1964
).
5.
Hawking
,
S. W.
, “
Chronology protection conjecture
,”
Phys. Rev. D
46
,
603
(
1992
).
6.
Hawking
,
S. W.
and
Ellis
,
G. F. R.
,
The Large Scale Structure of Space-Time
(
Cambridge University Press
,
Cambridge
,
1973
).
7.
Hawking
,
S. W.
and
Sachs
,
R. K.
, “
Causally continuous spacetimes
,”
Commun. Math. Phys.
35
,
287
(
1974
).
8.
Kronheimer
,
E. H.
and
Penrose
,
R.
, “
On the structure of causal spaces
,”
Proc. Cambridge Philos. Soc.
63
,
482
(
1967
).
9.
Minguzzi
,
E.
, e-print arXiv:0712.3942.
10.
Minguzzi
,
E.
, “
Weak distinction and the optimal definition of causal continuity
,”
Class. Quantum Grav.
25,
075015
(
2008
).
11.
Minguzzi
,
E.
and
Sánchez
,
M.
,
The Causal Hierarchy of Spacetimes
,
ESI Lectures in Mathematics and Physics
(
European Mathematical Society
,
Zurich
,
2008
), pp.
299
358
.
12.
Perko
,
L.
,
Differential Equations and Dynamical Systems
(
Springer-Verlag
,
New York
,
1991
).
13.
Tiglio
,
M. H.
, “
No time machine construction in open 2+1 gravity with timelike total energy-momentum
,”
Phys. Rev. D
58
,
064018
(
1998
).
You do not currently have access to this content.