The generalized purely squeezed states for primary shape-invariant potentials systems, quantum deformed by different models, are constructed by the ladder-operator method within an algebraic approach based on supersymmetric quantum mechanics. The characteristic properties of these states as well as their quantum statistical properties and squeezing effects for generalized quadrature observables are studied and analyzed in terms of the quantum deformation parameter . An application is given for a quantum deformed Pöschl–Teller potential system, and numerical results are presented and discussed in detail.
REFERENCES
1.
E. H.
Kennard
, Z. Phys.
44
, 326
(1927
).2.
D.
Stoler
, Phys. Rev. D
1
, 3217
(1970
);D.
Stoler
, Phys. Rev. D
4
, 1925
(1974
);P. H.
Yuen
, Phys. Rev. A
13
, 2226
(1976
);P. H.
Yuen
,Phys. Rev. Lett.
51
, 719
(1983
);I.
Fujiwara
and K.
Miyoshi
, Prog. Theor. Phys.
64
, 715
(1980
);V. V.
Dodonov
, E. V.
Kurmyshev
, and V. I.
Man’ko
, Phys. Lett.
79A
, 150
(1980
);P. A. K.
Rajogopal
and J. T.
Marshall
, Phys. Rev. A
26
, 2977
(1982
).3.
For a review from this period, see
M. M.
Nieto
, Frontiers of Nonequilibrium Statistical Physics
, edited by G. T.
Moore
and M. O.
Scully
(Plenum
, New York
1986
), p. 287
.4.
C. M.
Caves
, J. S.
Thorne
, R. W. P.
Drever
, V. D.
Sandberg
, and M.
Zimmerman
, Rev. Mod. Phys.
52
, 341
(1980
).5.
J. N.
Hollenhorst
, Phys. Rev. D
19
, 1669
(1979
).6.
7.
M.
Artori
, J.
Zang
, and J. L.
Birman
, Phys. Rev. A
47
, 2555
(1993
).8.
A.
Solomon
and J.
Katriel
, J. Phys. A
23
, L1209
(1990
).9.
R. J.
McDermott.
and A. I.
Solomon
, J. Phys. A
27
, L15
(1994
).10.
P.
Osland
and J.-Z.
Zhang
, Ann. Phys. (Paris)
290
, 45
(2001
).11.
B.
Aneva
, Eur. Phys. J. C
31
, 403
(2003
).12.
R.
Roknizadeh
and M. K.
Tavassoly
, J. Phys. A
37
, 5649
(2004
).13.
M. T.
Batchelor
, L.
Mezincescu
, R. I.
Nepomechie
, and V.
Rittenberg
, J. Phys. A
23
, L141
(1990
);H.
Grosse
, S.
Pallua
, P.
Prester
, and V.
Raschhofer
, J. Phys. A
27
4761
(1994
);M. R.
Ubriaco
, Phys. Rev. E
55
, 291
(1997
).14.
R.
Barbier
, J.
Meyer
, and M.
Kibler
, J. Phys. G
20
, L13
(1994
);M.
Angelova
, V. K.
Dobrev
, and A.
Frank
, J. Phys. A
34
, L503
(2001
).15.
D.
Bonatsos
and C.
Daskaloyannis
, Prog. Part. Nucl. Phys.
43
, 537
(1990
).16.
V.
Buzek
, J. Mod. Opt.
39
, 949
(1992
);L. M.
Kuang
, J. Mod. Opt.
41
, 517
(1994
);17.
L.
Alvarez-Gaume
, C.
Gomez
, and G.
Sierra
, Phys. Lett. B
220
, 142
(1989
);L.
Alvarez-Gaume
, C.
Gomez
, and G.
Sierra
,Nucl. Phys. B
330
, 347
(1990
).18.
A. B.
Balantekin
, Phys. Rev. A
57
, 4188
(1998
).19.
A. N. F.
Aleixo
, A. B.
Balantekin
, and M. A.
Cândido Ribeiro
, Phys. Rev. A
36, 011631
(2003
).20.
S.
Chaturvedi
, R.
Dutt
, A.
Gangopadhyay
, P.
Panigrahi
, C.
Rasinariu
, and U.
Sukhatme
, Phys. Lett. A
248
, 109
(1998
).21.
M. G.
Benedict
and B.
Molnár
, Phys. Rev. A
60
, R1737
(1999
).22.
A. B.
Balantekin
, M. A.
Cândido Ribeiro
, and A. N. F.
Aleixo
, J. Phys. A
32
, 2785
(1999
).23.
A. N. F.
Aleixo
, A. B.
Balantekin
, and M. A.
Cândido Ribeiro
, J. Phys. A
33
, 1503
(2000
).24.
C.
Chuan
, J. Phys. A
24
, L1165
(1991
).25.
A. N. F.
Aleixo
, A. B.
Balantekin
, and M. A.
Cândido Ribeiro
, J. Appl. Phys.
35, 9063
(2002
).26.
A.
Khare
, and U.
Sukhatme
, J. Phys. A
26
, L901
(1993
);D.
Barclay
, R.
Dutt
, A.
Gangopadhyaya
, A.
Khare
, A.
Pagnamenta
, and U.
Sukhatme
, Phys. Rev. A
48
, 2786
(1993
).
[PubMed]
27.
M.
Arik
and D. D.
Coon
, J. Math. Phys.
17
, 524
(1976
).28.
A. N. F.
Aleixo
and A. B.
Balantekin
, J. Phys. A: Math. Theor.
40
, 5105
(2007
).29.
A. N. F.
Aleixo
and A. B.
Balantekin
, J. Phys. A
38
, 8603
(2005
).30.
G.
Pöschl
and E.
Teller
, Z. Phys.
83
, 143
(1933
).31.
F.
Cooper
, A.
Khare
, and U.
Sukhatme
, Phys. Rep.
251
, 267
(1995
).32.
A. N. F.
Aleixo
and A. B.
Balantekin
, J. Phys. A
40
, 3463
(2007
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.