Three-body problems in atomic and molecular quantum mechanics, comprising one electron–two nuclei and two electron–one nucleus, are studied from their Schrödinger–Born–Oppenheimer models. The following are main topics of interest in this paper: (1) review of foundational mathematical properties of the multiparticle Schrödinger operator, (2) visualization of H2+ (hydrogen molecular ion)-like and He (helium)-like molecular and atomic states, and (3) spectrum of He obtained by the large-dimension scaling limit. The authors begin with topic (1) for the tutorial purpose and devote topics (2) and (3) to new contributions of the analytical, numerical, and visualization nature. Relevant heuristics, graphics, proofs, and calculations are presented.

1.
Atkins
,
P. W.
,
Molecular Quantum Mechanics
, 2nd ed. (
Oxford University Press
,
Oxford
,
1983
).
2.
Bates
,
D.
, and
Carson
,
T. R.
,
Proc. R. Soc. London, Ser. A
234
,
207
(
1956
).
3.
Babuska
,
I.
, and
Osborn
,
J.
,
Finite Element Methods
, in
Handbook of Numerical Analysis
, Vol.
II
, edited by
P. G.
Ciarlet
and
J. L.
Lions
(
North-Holland
,
New York
,
1990
), pp.
642
787
.
4.
Bhatia
,
A. K.
, and
Temkin
,
A.
,
Rev. Mod. Phys.
36
,
1050
(
1964
).
5.
Born
,
M.
, and
Oppenheimer
,
J. R.
,
Ann. Phys.
389
,
457
(
1927
).
6.
Bürgers
,
A.
,
Wingarten
,
D.
, and
Rost
,
J. M.
,
J. Phys. B
28
,
3163
(
1995
).
7.
Caffarelli
,
L.
,
Kohn
,
R.
, and
Nirenberg
,
L.
,
Compos. Math.
53
,
259
(
1984
).
8.
Carzoli
,
J. C.
,
Dunn
,
M.
, and
Watson
,
D. K.
,
Phys. Rev. A
59
,
182
(
1999
).
9.
Chen
,
G.
,
Chin
,
S. A.
,
Dou
,
Y.
,
Kapale
,
K. T.
,
Kim
,
M.
,
Svidzinsky
,
A.
,
Urtekin
,
K.
,
Xiong
,
H.
, and
Scully
,
M. O.
,
Adv. At., Mol., Opt. Phys.
51
,
93
(
2005
).
10.
Chen
,
G.
,
Ding
,
Z.
,
Hsu
,
S.-B.
,
Kim
,
M.
, and
Zhou
,
J.
, “
Mathematical analysis of the Bohr atom models
,”
J. Math. Phys.
47
,
022107
(
2006
).
11.
Chen
,
G.
,
Ding
,
Z.
,
Perronnet
,
A.
,
Scully
,
M. O.
,
Xie
,
R.
, and
Zhang
,
Z.
, in
High Dimensional PDEs in Science and Engineering
,
CRM Proceedings and Lecture Notes
Vol.
41
, edited by
A.
Bandrauk
,
M. C.
Delfour
, and
C.
Le Bris
(
American Mathematical Society
,
2007
), pp.
49
72
.
12.
Chen
,
G.
, and
Zhou
,
J.
,
Boundary Element Methods
(
Academic
,
London
,
1992
).
13.
Cycon
,
H. L.
,
Froese
,
R. G.
,
Kirsch
,
W.
, and
Simon
,
B.
,
Schrödinger Operators with Application to Quantum Mechanics and Global Geometry
(
Springer-Verlag
,
New York
,
1987
).
14.
Ding
,
Z.
, and
Chen
,
G.
, “
Mathematical analysis of excited states of helium atom via the quantum number D-scaling
,” preprint.
15.
Dunn
,
M.
, and
Watson
,
D. K.
,
Phys. Rev. A
59
,
1109
(
1999
).
16.
Fock
,
V. A.
,
Izv. Akad. Nauk SSSR, Ser. Fiz.
18
,
161
(
1954
);
Norske
,
K.
,
Vidensk. Selsk. Fosh.
31,
138
(
1958
) (English translation).
17.
Foresman
,
J. B.
, and
Frisch
,
Æ.
,
Exploring Chemistry with Electronic Structure Methods
(
Gaussian
,
Pittsburgh, PA
,
1996
).
18.
Fournais
,
S.
,
Hoffman-Ostenhof
,
M.
,
Hoffman-Ostenhof
,
T.
, and
Sørensen
,
T. O.
, “
Sharp regularity results for Coulombic many-electron wave functions
,”
Commun. Math. Phys.
255
,
183
(
2005
).
19.
Frisch
,
Æ.
,
Frisch
,
M. J.
, and
Trucks
,
G. W.
,
Gaussian 03 User’s Reference
(
Gaussian
,
Carnegie, PA
,
2003
).
20.
Gilbarg
,
D.
, and
Trudinger
,
N.
,
Elliptic Partial Differential Equations of Second Order
(
Springer
,
New York
,
2001
).
21.
Goodson
,
D. Z.
, and
Herschbach
,
D. R.
,
Phys. Rev. A
46
,
5428
(
1992
).
22.
Goodson
,
D. Z.
, and
Watson
,
D. K.
,
Phys. Rev. A
48
,
2668
(
1993
).
23.
Gutzwiller
,
M. C.
,
Rev. Mod. Phys.
70
,
589
(
1998
).
24.
Gutzwiller
,
M. C.
,
AIP Conf. Proc.
334
,
275
(
1995
).
25.
Herrick
,
D.
, “
Degeneracies in energy levels of quantum systems of variable dimensionality
,”
J. Math. Phys.
16
,
281
(
1975
).
26.
Herrick
,
D. R.
, and
Sinanoglu
,
O.
,
Phys. Rev. A
11
,
97
(
1975
).
27.
Herschbach
,
D. R.
,
J. Chem. Phys.
84
,
838
(
1986
).
28.
Herschbach
,
D. R.
, personal communication (
15 September 2007
).
29.
Herschbach
,
D. R.
,
Avery
,
S.
, and
Goscinski
,
O.
,
Dimensional Scaling in Chemical Physics
(
Kluwer Academic
,
Dordrecht
,
1992
).
30.
Herschbach
,
D. R.
,
Loeser
,
J. G.
, and
Watson
,
D. K.
,
Z. Phys. D: At., Mol. Clusters
10
,
195
(
1988
).
31.
Hylleraas
,
E. A.
,
Z. Phys.
71
,
739
(
1931
).
33.
Kato
,
T.
, “
Integration of the equations of evolution in a Banach space
,”
J. Math. Soc. Jpn.
5
,
208
(
1953
).
34.
Kato
,
T.
, “
Wave operators and similarity for some non-selfadjoint operators
,”
Math. Ann.
162
,
258
(
1966
).
35.
Kato
,
T.
, “
Fundamental properties of Hamiltonian of the Schrödinger type
,”
Trans. Am. Math. Soc.
70
,
195
(
1951
).
36.
Kato
,
T.
, “
On the existence of solutions of the helium wave equations
,”
Trans. Am. Math. Soc.
70
,
212
(
1951
).
37.
Kato
,
T.
, “
Growth properties of solutions of the reduced wave equation with variable coefficients
,”
Commun. Pure Appl. Math.
12
,
403
(
1959
).
38.
Kato
,
T.
, “
Perturbations of continuous spectra by trace class operators
,”
Proc. Jpn. Acad.
33
,
260
(
1957
).
39.
Kossmann
,
H.
,
Krässig
,
B.
, and
Schmidt
,
V.
,
J. Phys. B
21
,
1489
(
1988
).
41.
Lieb
,
E.
, and
Loss
,
M.
,
Analysis
, 2nd ed. (
American Mathematical Society
, Providence,
2001
).
43.
Loeser
,
J. G.
, and
Herschbach
,
D. R.
,
J. Chem. Phys.
84
,
3882
(
1986
).
44.
Louck
,
J. D.
, and
Shaffer
,
W. H.
,
J. Mol. Spectrosc.
4
,
285
(
1960
).
45.
Louck
,
J. D.
,
J. Mol. Spectrosc.
4
,
334
(
1960
).
46.
Madden
,
R. P.
, and
Codling
,
K.
,
Phys. Rev. Lett.
10
,
516
(
1963
).
47.
Morgan
,
H. D.
, and
Ederer
,
D. L.
,
Phys. Rev. A
29
,
1901
(
1984
).
48.
Morgan
 III,
J. D.
, “
Convergence properties of Fock’s expansion for S-state of the helium atom
,”
Theor. Chim. Acta
69
,
181
(
1986
).
49.
Murawski
,
R.
, and
Svidzinsky
,
A.
, “
Quantum number dimensional scaling analysis for excited states of multielectron atoms
,”
Phys. Rev. A
74
,
042507
(
2006
).
50.
National Institute of Standards and Technology (NIST)(http://physics.nist.gov/cgi-bin/ASD/energy1.pl).
51.
Nikitin
,
S. I.
, and
Ostrovsky
,
V. N.
,
J. Phys. B
18
,
4349
(
1985
);
Nikitin
,
S. I.
, and
Ostrovsky
,
V. N.
,
J. Phys. B
18
,
4371
(
1985
).
52.
Patil
,
S. H.
, and
Tang
,
K. T.
,
Asymptotic Methods in Quantum Mechanics, Applications to Atoms, Molecules and Nuclei
(
Springer-Verlag
,
Berlin
,
2000
).
53.
Reed
,
M.
, and
Simon
,
B.
,
Methods of Modern Mathematical Physics
(
Academic
,
New York
,
1980
), Vol.
I–IV
.
54.
Shibuya
,
T.
, and
Wulfman
,
C. E.
,
Proc. R. Soc. London, Ser. A
286
,
377
(
1965
).
55.
Svidzinsky
,
A. A.
,
Scully
,
M. O.
, and
Herschbach
,
D. R.
,
Phys. Rev. Lett.
95
,
080401
(
2005
).
56.
Svidzinsky
,
A. A.
,
Scully
,
M. O.
, and
Herschbach
,
D. R.
, “
Bohr’s 1913 molecular model revisited
,”
Proc. Natl. Acad. Sci. U.S.A.
102
,
11985
(
2005
).
57.
Tanner
,
G.
,
Richter
,
K.
, and
Rost
,
J.-M.
, “
The theory of two electron atoms: Between ground state and complete fragmentation
,”
Rev. Mod. Phys.
72
,
497
(
2000
).
58.
Thijssen
,
J. M.
,
Computational Physics
(
Cambridge University Press
,
Cambridge
,
1999
).
59.
Trabesinger
,
A.
, “
Bohr’n again
,”
Nature Physics
, http://www.nature.com/nphys/journal/vaop/nprelaunch/full/nphys115.html.
60.
Tsipis
,
C. A.
,
Popov
,
V. S.
,
Hershbach
,
D. R.
and
Avery
,
J.
,
New Methods in Quantum Theory
(
Kluwer
,
Dordrecht
,
1996
).
61.
Weidmann
,
J.
,
Bull. Am. Math. Soc.
73
,
452
(
1967
).
62.
Weidmann
,
J.
,
Linear Operators in Hilbert Spaces
(
Springer-Verlag
,
New York
,
1980
).
63.
Witten
,
E.
,
Phys. Today
33
(
7
),
38
(
1980
).
64.
Woodruff
,
P. R.
, and
Samson
,
J. A. R.
,
Phys. Rev. A
25
,
848
(
1982
).
65.
Zare
,
R. N.
,
Angular Momentum
(
Wiley
,
New York
,
1988
).
66.
Zhislin
,
G.
,
Theor. Math. Phys.
21
,
971
(
1974
).
67.
Zubek
,
M.
,
King
,
G. C.
,
Rutter
,
P. M.
, and
Read
,
F. H.
,
J. Phys. B
22
,
34
(
1989
).
68.

The results in this subsection were partially reported in a recent paper (Ref. 11) by the authors. We include them here for the sake of completeness.

You do not currently have access to this content.