The solution of the eigenvalue problem of the Laplacian on a general homogeneous space GH is given. Here, G is a compact, semisimple Lie group, H is a closed subgroup of G, and the rank of H is equal to the rank of G. It is shown that the multiplicity of the lowest eigenvalue of the Laplacian on GH is just the degeneracy of the lowest Landau level for a particle moving on GH in the presence of the background gauge field. Moreover, the eigenspace of the lowest eigenvalue of the Laplacian on GH is, up to a sign, equal to the G-equivariant index of the Kostant’s Dirac operator on GH.

1.
P.
Ramond
,
Francqui Foundation Meeting in honor of M. Henneaux
,
Brussels
, October
2001
(unpublished).
2.
S.-C.
Zhang
and
J.
Hu
,
Science
294
,
823
(
2001
).
3.
M.
Fabinger
,
J. High Energy Phys.
0205
,
037
(
2002
).
4.
D.
Karabali
and
V. P.
Nair
,
Nucl. Phys. B
641
,
533
(
2002
).
5.
B. A.
Bernevig
,
C. H.
Chern
,
J.
Hu
,
N.
Toumbas
, and
S.-C.
Zhang
,
Ann. Phys.
300
,
185
(
2002
).
6.
B.
Dolan
,
J. High Energy Phys.
0305
,
018
(
2003
).
7.
B. A.
Bernevig
,
J.
Hu
,
N.
Toumbas
, and
S.-C.
Zhang
,
Phys. Rev. Lett.
91
,
236803
(
2003
).
8.
S.
Bellucci
,
P. Y.
Casteill
, and
A.
Nersessian
,
Phys. Lett. B
574
,
121
(
2003
).
11.
D.
Karabali
and
V. P.
Nair
,
J. Phys. A
39
,
12735
(
2006
).
12.
R.
Bott
, in
Differential and Combinatorial Topology
, edited by
S. S.
Cairns
(
Princeton University Press
,
Princeton
,
1965
), pp.
167
186
.
13.
14.
G. D.
Landweber
,
Representation Theory
4,
466
(
2000
).
15.
B.
Gross
,
B.
Kostant
,
P.
Ramond
, and
S.
Sternberg
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
8441
(
1998
).
16.
S.
Kobayashi
and
K.
Nomizu
,
Foundations of Differential Geometry
(
Interscience
,
New York
,
1963
), Vol.
I
.
17.
S.
Kobayashi
and
K.
Nomizu
,
Foundations of Differential Geometry
(
Interscience
,
New York
,
1969
), Vol.
II
.
19.
N. P.
Landsman
,
Rev. Math. Phys.
4
,
503
(
1992
).
20.
P.
Lévay
,
D.
McMullan
, and
I.
Tsutsui
,
J. Math. Phys.
37
,
625
(
1996
).
21.
A.
Marshakov
and
A.
Niemi
,
Mod. Phys. Lett. A
20
,
2538
(
2005
).
22.
A. O.
Barut
and
R.
Raczka
,
Theory of Group Representations and Applications
, 2nd ed. (
World Scientific
,
Singapore
,
1986
).
You do not currently have access to this content.