The solution of the eigenvalue problem of the Laplacian on a general homogeneous space is given. Here, is a compact, semisimple Lie group, is a closed subgroup of , and the rank of is equal to the rank of . It is shown that the multiplicity of the lowest eigenvalue of the Laplacian on is just the degeneracy of the lowest Landau level for a particle moving on in the presence of the background gauge field. Moreover, the eigenspace of the lowest eigenvalue of the Laplacian on is, up to a sign, equal to the -equivariant index of the Kostant’s Dirac operator on .
REFERENCES
1.
P.
Ramond
, Francqui Foundation Meeting in honor of M. Henneaux
, Brussels
, October 2001
(unpublished).2.
S.-C.
Zhang
and J.
Hu
, Science
294
, 823
(2001
).3.
4.
D.
Karabali
and V. P.
Nair
, Nucl. Phys. B
641
, 533
(2002
).5.
B. A.
Bernevig
, C. H.
Chern
, J.
Hu
, N.
Toumbas
, and S.-C.
Zhang
, Ann. Phys.
300
, 185
(2002
).6.
7.
B. A.
Bernevig
, J.
Hu
, N.
Toumbas
, and S.-C.
Zhang
, Phys. Rev. Lett.
91
, 236803
(2003
).8.
S.
Bellucci
, P. Y.
Casteill
, and A.
Nersessian
, Phys. Lett. B
574
, 121
(2003
).9.
G.
Meng
, J. Phys. A
36
, 9415
(2003
).10.
A.
Jellal
, Nucl. Phys. B
725
, 554
(2005
).11.
D.
Karabali
and V. P.
Nair
, J. Phys. A
39
, 12735
(2006
).12.
R.
Bott
, in Differential and Combinatorial Topology
, edited by S. S.
Cairns
(Princeton University Press
, Princeton
, 1965
), pp. 167
–186
.13.
B.
Kostant
, Duke Math. J.
100
, 447
(1999
).14.
15.
B.
Gross
, B.
Kostant
, P.
Ramond
, and S.
Sternberg
, Proc. Natl. Acad. Sci. U.S.A.
95
, 8441
(1998
).16.
S.
Kobayashi
and K.
Nomizu
, Foundations of Differential Geometry
(Interscience
, New York
, 1963
), Vol. I
.17.
S.
Kobayashi
and K.
Nomizu
, Foundations of Differential Geometry
(Interscience
, New York
, 1969
), Vol. II
.18.
M.
Stone
, Nucl. Phys. B
314
, 557
(1989
).19.
N. P.
Landsman
, Rev. Math. Phys.
4
, 503
(1992
).20.
P.
Lévay
, D.
McMullan
, and I.
Tsutsui
, J. Math. Phys.
37
, 625
(1996
).21.
A.
Marshakov
and A.
Niemi
, Mod. Phys. Lett. A
20
, 2538
(2005
).22.
A. O.
Barut
and R.
Raczka
, Theory of Group Representations and Applications
, 2nd ed. (World Scientific
, Singapore
, 1986
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.