Umbral calculus can be viewed as an abstract theory of the Heisenberg commutation relation [P̂,M̂]=1. In ordinary quantum mechanics, P̂ is the derivative and M̂ the coordinate operator. Here, we shall realize P̂ as a second order differential operator and M̂ as a first order integral one. We show that this makes it possible to solve large classes of differential and integrodifferential equations and to introduce new classes of orthogonal polynomials, related to Laguerre polynomials. These polynomials are particularly well suited for describing the so-called flatenned beams in laser theory

1.
S.
Roman
and
G. C.
Rota
,
Adv. Math.
27
,
95
(
1978
).
2.
S.
Roman
,
The Umbral Calculus
(
Academic
,
New York
,
1984
).
3.
G. C.
Rota
,
Finite Operator Calculus
(
Academic
,
New York
,
1975
).
4.
A.
Di Bucchianico
and
D.
Loeb
,
The Electronic Journal of Combinatorics DS3
(
2000
).
5.
G.
Dattoli
,
M.
Migliorati
, and
H. M.
Srivastava
,
Math. Comput. Modell.
45
,
1033
(
2007
).
6.
G.
Dattoli
,
A.
Torre
and
G.
Mazzacurati
,
Rend. Mat. Ser. VII
18
,
565
(
1998
).
7.
P.
Blasiak
,
G.
Dattoli
,
A.
Horzela
, and
P. A.
Penson
,
Phys. Lett. A
352
,
7
(
2005
).
8.
G.
Dattoli
,
M.
Migliorati
, and
S.
Kahn
,
Appl. Math. Comput.
186
,
302
(
2007
).
9.
A. V.
Turbiner
,
Commun. Math. Phys.
118
,
467
(
1988
).
10.
Yu.
Smirnov
, and
A. V.
Turbiner
,
Mod. Phys. Lett. A
10
,
1795
(
1995
).
11.
C.
Chyssomlokos
and
A. V.
Turbiner
,
J. Phys. A
34
,
10475
(
2001
).
12.
D.
Levi
,
P.
Tempesta
, and
P.
Winternitz
,
J. Math. Phys.
45
,
4077
(
2004
).
13.
D.
Levi
,
P.
Tempesta
, and
P.
Winternitz
,
Phys. Rev. D
69
,
105011
(
2004
).
14.
P. J.
Olver
,
Applications of Lie Groups to Differential Equations
(
Springer-Verlag
,
New York
,
1993
).
15.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(
Wiley
,
New York
,
1989
).
16.
I. S.
Gradshteyn
and
I. M.
Ryzhik
,
Tables of Integrals, Series, and Products
(
Academic
,
New York
,
1965
).
17.
M.
Abramowitz
and
I. A.
Stegun
,
Handbook of Mathematical Functions
(
Dover
,
New York
,
1968
).
18.
B. C.
Hall
,
Lie Groups, Lie Algebras and Representations: An Elementary Introduction
(
Springer
,
New York
,
2003
);
see also e-print arxiv:math-ph/0005032.
19.
A. E.
Siegman
,
IEEE J. Sel. Top. Quantum Electron.
6
,
1389
(
2000
).
21.
R. A.
Sunyaev
and
Ya. B.
Zeldovich
,
Astrophys. Space Sci.
7
,
3
(
1970
).
22.
R. A.
Sunyaev
and
Ya. B.
Zeldovich
,
Annu. Rev. Astron. Astrophys.
18
,
537
(
1980
).
23.
Y.
Rephaeli
,
S.
Sadeh
, and
M.
Shimon
,
Riv. Nuovo Cimento
29
,
1
(
2006
).
24.
G.
Dattoli
,
M.
Migliorati
, and
K.
Zhukovsky
,
Riv. Nuovo Cimento
29
,
1
(
2006
).
25.
L.
Infeld
and
T. E.
Hull
,
Rev. Mod. Phys.
23
,
21
(
1951
).
26.
B.
Mielnik
and
O.
Rosas-Ortiz
,
J. Phys. A
37
,
10007
(
2004
).
You do not currently have access to this content.