We study the Kertész line of the q-state Potts model at (inverse) temperature β in the presence of an external magnetic field h. This line separates the two regions of the phase diagram according to the existence or not of an infinite cluster in the Fortuin–Kasteleyn representation of the model. It is known that the Kertész line hK(β) coincides with the line of first order phase transition for small fields when q is large enough. Here, we prove that the first order phase transition implies a jump in the density of the infinite cluster; hence, the Kertész line remains below the line of first order phase transition. We also analyze the region of large fields and prove, using techniques of stochastic comparisons, that hK(β) equals log(q1)log(ββp) to the leading order, as β goes to βp=log(1pc), where pc is the threshold for bond percolation.

1.
C. M.
Fortuin
and
P. W.
Kasteleyn
,
Physica A
57,
536
(
1972
).
2.
A.
Coniglio
and
W.
Klein
,
J. Phys. A
13
,
2775
(
1980
).
4.
Ph.
Blanchard
,
D.
Gandolfo
,
L.
Laanait
,
J.
Ruiz
, and
H.
Satz
,
J. Phys. A
41
,
085001
(
2008
).
5.
R. G.
Edwards
and
A. D.
Sokal
,
Phys. Rev. D
38
,
2009
(
1988
).
6.
Ph.
Blanchard
,
D.
Gandolfo
,
J.
Ruiz
, and
M.
Wouts
, e-print arXiv:0803.191.
7.
M.
Aizenman
,
J. T.
Chayes
,
L.
Chayes
, and
C. M.
Newman
,
J. Phys. A
20
,
L313
(
1987
).
8.
L.
Chayes
and
R. H.
Schonmann
,
Ann. Appl. Probab.
10
,
1182
(
2000
).
9.
H.-O.
Georgii
,
O.
Häggström
, and
C.
Maes
,
Phase Transitions and Critical Phenomena
(
Academic
,
San Diego, CA
,
2001
), Vol.
18
, pp.
1
42
.
10.
G. R.
Grimmett
,
The Random-Cluster Model
,
Grundlehren der Mathematischen Wissenschaften
Vol.
333
(
Springer-Verlag
,
Berlin
,
2006
).
11.
J. L.
Lebowitz
,
J. Stat. Phys.
16
,
463
(
1977
).
12.
G. R.
Grimmett
,
Ann. Probab.
23
,
1461
(
1995
).
13.
M.
Wouts
,
Stochastic Proc. Appl.
(to appear).
14.
M.
Aizenman
,
J. T.
Chayes
,
L.
Chayes
, and
C. M.
Newman
,
J. Stat. Phys.
50
,
1
(
1988
).
15.
J. M.
Hammersley
,
J. Math. Phys.
2
,
728
(
1961
).
16.
J. G.
Oxley
and
D. J. A.
Welsh
,
J. Appl. Probab.
16
,
526
(
1979
).
17.
G. R.
Grimmett
and
A. M.
Stacey
,
Ann. Probab.
26
,
1788
(
1998
).
You do not currently have access to this content.