Fermions are expressible in terms of polynomials in the canonical generators and their ∗-conjugates of the Cuntz algebra . A canonical construction of such fermions is called a recursive fermion system. In this paper, various unital ∗-endomorphisms of the algebra of fermions are explicitly constructed by using the recursive fermion system. We investigate how such endomorphisms transform the Fock representation, the infinite wedge representation, and their duals.
REFERENCES
1.
Abe
, M.
and Kawamura
, K.
, “Recursive fermion system in Cuntz algebra. I—Embeddings of fermion algebra into Cuntz algebra—
,” Commun. Math. Phys.
228
, 85
(2002
).2.
Abe
, M.
and Kawamura
, K.
, “Nonlinear transformation group of CAR fermion algebra
,” Lett. Math. Phys.
60
, 101
(2002
).3.
Abe
, M.
and Kawamura
, K.
, “Recursive fermion system in Cuntz algebra. II—Endomorphism, automorphism and branching of representation–
,” Report No. RIMS-1362, 2002
(unpublished).4.
Abe
, M.
and Kawamura
, K.
, “Pseudo Cuntz algebra and recursive FP ghost system in string theory
,” Int. J. Mod. Phys. A
18
, 607
(2003
).5.
Abe
, M.
and Kawamura
, K.
, “Branching laws for polynomial endomorphisms in CAR algebra for fermions, uniformly hyperfinite algebras and Cuntz algebras
,” e-print arXiv:math-ph/0606047.6.
Awata
, H.
, Odake
, S.
, and Shiraishi
, J.
, “Free boson representation of
,” Lett. Math. Phys.
30
, 207
(1994
).7.
Bergmann
, W. R.
and Conti
, R.
, “Induced product representation of extended Cuntz algebras
,” Ann. Mat. Pura Appl.
182
, 271
(2003
).8.
Bratteli
, O.
and Robinson
, D. W.
, Operator Algebras And Quantum Statistical Mechanics II
(Springer
, New York
, 1981
).9.
Bratteli
, O.
and Jorgensen
, P. E. T.
, “Iterated function systems and permutation representations of the Cuntz algebra
,” Mem. Am. Math. Soc.
139
, 1
(1999
).10.
Davidson
, K. R.
and Pitts
, D. R.
, “The algebraic structure of noncommutative analytic Toeplitz algebras
,” Math. Ann.
311
, 275
(1998
).11.
Davidson
, K. R.
and Pitts
, D. R.
, “Invariant subspaces and hyperreflexivity for free semigroup algebras
,” Proc. London Math. Soc.
78
, 401
(1999
).12.
Doplicher
, S.
, Haag
, R.
, and Roberts
, J. E.
, “Fields, observables and gauge transformations I
,” Commun. Math. Phys.
13
, 1
(1969
).13.
Haag
, R.
, Local Quantum Physics
, 2nd ed. (Springer-Verlag
, Berlin
, 1996
).14.
Jordan
, P.
and Wigner
, E.
, “Über das Paulische ‘Aquivalenzverbot’
,” Z. Phys.
47
, 631
(1928
).15.
Kato
, A.
, Quano
, Y.
, and Shiraishi
, J.
, “Free boson representation of -vertex operators and their correlation functions
,” Commun. Math. Phys.
157
, 119
(1993
).16.
17.
Kawamura
, K.
, “Generalized permutative representations of the Cuntz algebras
,” e-print arXiv:math.OA/0505101.18.
Kawamura
, K.
, “Polynomial endomorphisms of the Cuntz algebras arising from permutations. I—General theory—
,” Lett. Math. Phys.
71
, 149
(2005
).19.
Kawamura
, K.
, “Extensions of representations of the CAR algebra to the Cuntz algebra —the Fock and the infinite wedge—
,” J. Math. Phys.
46
, 073509
(2005
).20.
Kawamura
, K.
, “Branching laws for polynomial endomorphisms of Cuntz algebras arising from permutations
,” Lett. Math. Phys.
77
, 111
(2006
).21.
Kawamura
, K.
, “Recursive boson system in the Cuntz algebra
,” J. Math. Phys.
48
, 093510
(2007
).22.
MacKay
, N.
and Zhao
, L.
, “On the algebra and free boson representations
,” J. Phys. A
34
, 6313
(2001
).23.
Miwa
, T.
, Jimbo
, M.
, and Date
, E.
, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras
(Cambridge University Press
, Cambridge
, 2000
).24.
Okounkov
, A.
, “Infinite wedge and random partitions
,” Selecta Math., New Ser.
7
, 57
(2001
).25.
Peskin
, M. E.
, and Schroeder
, D. V.
, An Introduction to Quantum Field Theory
(Addison-Wesley
, Reading, MA
, 1995
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.