The free energies of six-vertex models on a general domain D with various boundary conditions are investigated with the use of the n-equivalence relation, which help classify the thermodynamic limit properties. It is derived that the free energy of the six-vertex model on the rectangle is unique in the limit (height,width)(,). It is derived that the free energies of the model on the domain D are classified through the densities of left∕down arrows on the boundary. Specifically, the free energy is identical to that obtained by Lieb [Phys. Rev. Lett.18, 1046 (1967); 19, 108 (1967); Phys. Rev.162, 162 (1967)] and Sutherland [Phys. Rev. Lett19, 103 (1967)] with the cyclic boundary condition when the densities are both equal to 12. This fact explains several results already obtained through the transfer matrix calculation. The relation to the domino tiling (or dimer, or matching) problems is also noted.

1.
E. H.
Lieb
,
Phys. Rev. Lett.
18
,
1046
(
1967
).
2.
E. H.
Lieb
,
Phys. Rev. Lett.
19
,
108
(
1967
).
3.
4.
B.
Sutherland
,
Phys. Rev. Lett.
19
,
103
(
1967
).
5.
V.
Korepin
,
Commun. Math. Phys.
86
,
391
(
1982
).
6.
A.
Izergin
,
Sov. Phys. Dokl.
32
,
878
(
1987
).
7.
A.
Izergin
,
D.
Coker
, and
V.
Korepin
,
J. Phys. A
25
,
4315
(
1992
).
8.
V.
Korepin
and
P.
Zinn-Justin
,
J. Phys. A
33
,
7053
(
2000
).
9.
P.
Zinn-Justin
,
Phys. Rev. E
62
,
3411
(
2000
).
10.
R.
Bleher
and
V.
Fokin
,
Commun. Math. Phys.
268
,
223
(
2006
).
11.
D.
Allison
and
N.
Reshetikhin
,
Ann. Inst. Fourier
55
,
1847
(
2005
).
12.
K.
Minami
,
J. Phys. Soc. Jpn.
74
,
1640
(
2005
).
13.
R. J.
Baxter
,
Exactly Solved Models in Statistical Mechanics
(
Academic
,
New York
,
1982
).
14.
R.
Courant
and
D.
Hilbert
,
Methods of Mathematical Physics
(
Wiley
,
New York
,
1962
).
15.
D.
Ruelle
,
Statistical Mechanics: Rigorous Results
(
World Scientific
,
Singapore/Imperial College Press
,
London
,
1999
).
16.
A. L.
Owczarek
and
R. J.
Baxter
,
J. Phys. A
22
,
1141
(
1989
).
17.
M. T.
Batchelor
,
R. J.
Baxter
,
M. J.
O’Rourke
, and
C. M.
Yung
,
J. Phys. A
28
,
2759
(
1995
).
18.
H. J.
Brascamp
,
H.
Kunz
, and
F. Y.
Wu
,
J. Math. Phys.
14
,
1927
(
1973
).
19.
J.
Propp
,
New Perspectives in Geometric Combinatorics
,
MSRIP
Vol.
38
(
Cambridge University Press
,
Cambridge
,
1999
).
20.
R.
Kenyon
,
The Planer Dimer Model with Boundary: A Survey
,
CRM Monograph Series
Vol.
13
(
American Mathematical Society
,
Providence
,
2000
), p.
307
.
21.
P. W.
Kasteleyn
,
Physica (Amsterdam)
27
,
1209
(
1961
).
22.
H. N. V.
Temperley
and
M. E.
Fisher
,
Philos. Mag.
6
,
1061
(
1961
).
23.
N.
Elkies
,
G.
Kuperberg
,
M.
Larsen
, and
J.
Propp
,
J. Algebr. Comb.
1
,
111
(
1992
);
N.
Elkies
,
G.
Kuperberg
,
M.
Larsen
, and
J.
Propp
,
J. Algebr. Comb.
1
,
219
(
1992
).
24.
H.
Cohn
,
R.
Kenyon
, and
J.
Propp
,
J. Am. Math. Soc.
14
,
297
(
2001
).
25.
C.
Fan
and
F. Y.
Wu
,
Phys. Rev. B
2
,
723
(
1970
).
You do not currently have access to this content.