We consider the Bohr correspondence limit of the Schrödinger wave function for an atomic elliptic state. We analyze this limit in the context of Nelson’s stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler’s laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Keplerian orbit for eccentricities greater than which do not occur classically.
REFERENCES
1.
Bhatia
, N. P.
and Szegö
, G. P.
, Dynamical Systems: Stability Theory and Applications
, Lecture Notes in Mathematics
Vol. 35
(Springer-Verlag
, Berlin
, 1967
).2.
Bhatia
, N. P.
and Szegö
, G. P.
, Stability Theory of Dynamical Systems
, Die Grundlehren der mathematischen Wissenschaften
, Band 161 (Springer-Verlag
, New York
, 1970
).3.
Blanchard
, P.
and Golin
, S.
, “Diffusion processes with singular drift fields
,” Commun. Math. Phys.
109
, 421
–435
(1987
).4.
Bohr
, N.
, “Uber die Anwendung der Quantentheorie auf den Atombau. I. Die Grundpostulaten der Quantentheorie
,” Z. Phys.
13
, 117
–165
(1923
).5.
Buchholz
, H.
, The Confluent Hypergeometric Function with Special Emphasis on its Applications
, Springer Tracts in Natural Philosophy
Vol. 15
(Springer-Verlag
, New York
1969
).6.
Durran
, R.
and Truman
, A.
, Stochastic Mechanics and Stochastic Processes (Swansea, 1986)
, Lecture Notes in Mathematics
Vol. 1325
(Springer
, Berlin
, 1988
), pp. 76
–88
.7.
Durran
, R.
and Truman
, A.
, Stochastic Analysis, Path Integration and Dynamics (Warwick, 1987)
, Pitman Research Notes Mathematics Series
Vol. 200
(Longman
, Harlow
, 1989
), pp. 197
–214
.8.
Exner
, P.
and Truman
, A.
, Stochastics and Quantum Mechanics (Swansea, 1990)
(World Scientific
, River Edge, NJ
, 1992), pp. 130
–150
.9.
Filippov
, A. F.
, Differential Equations with Discontinuous Righthand Sides
, Mathematics and its Applications (Soviet Series)
Vol. 18
(Kluwer Academic
, Dordrecht
, 1988
).10.
Freidlin
, M. I.
and Wentzell
, A. D.
, Random Perturbations of Dynamical Systems
, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
Vol. 260
, 2nd ed. (Springer-Verlag
, New York
, 1998
).11.
Lena
, C.
, Delande
, D.
, and Gay
, J. C.
, “Wave functions of atomic elliptic states
,” Europhys. Lett.
15
, 697
–702
(1991
).12.
Nelson
, E.
, “Derivation of the Schrödinger equation from Newtonian mechanics
,” Phys. Rev.
150
, 1079
–1085
(1966
).13.
Nelson
, E.
, Dynamical Theories of Brownian Motion
(Princeton University Press
, Princeton, NJ
, 1967
).14.
Nelson
, E.
, Quantum Fluctuations
, Princeton Series in Physics
(Princeton University Press
, Princeton, NJ
, 1985
).15.
Simon
, B.
, “Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions
,” Ann. Inst. Henri Poincare, Sect. A
38
, 295
–308
(1983
).16.
Simon
, B.
, “Semiclassical analysis of low lying eigenvalues, II. Tunneling
,” Ann. Math.
120
, 89
–118
(1984
).17.
Simon
, B.
, “Semiclassical analysis of low lying eigenvalues. III. Width of the ground state band in strongly coupled solids
,” Ann. Phys. (N.Y.)
158
, 415
–420
(1984
).18.
Simon
, B.
, “Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant
,” J. Funct. Anal.
63
, 123
–136
(1985
).19.
Truman
, A.
and Williams
, D.
, Recent Developments in Quantum Mechanics (Poiana Braşov, 1989)
, Mathematical Physics Studies
Vol. 12
(Kluwer Academic
, Dordrecht
, 1991
).20.
Veretennikov
, A. Yu.
, “On strong solutions of stochastic Itô equations with jumps
,” Teor. Veroyatn. Ee Primen.
32
, 159
–163
(1987
).21.
Wang
, F.-Y.
, Functional Inequalities, Markov Semigroups and Spectral Theory
(Science
, Beijing
, 2005
).22.
© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.