We consider the Bohr correspondence limit of the Schrödinger wave function for an atomic elliptic state. We analyze this limit in the context of Nelson’s stochastic mechanics, exposing an underlying deterministic dynamical system in which trajectories converge to Keplerian motion on an ellipse. This solves the long standing problem of obtaining Kepler’s laws of planetary motion in a quantum mechanical setting. In this quantum mechanical setting, local mild instabilities occur in the Keplerian orbit for eccentricities greater than 12 which do not occur classically.

1.
Bhatia
,
N. P.
and
Szegö
,
G. P.
,
Dynamical Systems: Stability Theory and Applications
,
Lecture Notes in Mathematics
Vol.
35
(
Springer-Verlag
,
Berlin
,
1967
).
2.
Bhatia
,
N. P.
and
Szegö
,
G. P.
,
Stability Theory of Dynamical Systems
,
Die Grundlehren der mathematischen Wissenschaften
, Band 161 (
Springer-Verlag
,
New York
,
1970
).
3.
Blanchard
,
P.
and
Golin
,
S.
, “
Diffusion processes with singular drift fields
,”
Commun. Math. Phys.
109
,
421
435
(
1987
).
4.
Bohr
,
N.
, “
Uber die Anwendung der Quantentheorie auf den Atombau. I. Die Grundpostulaten der Quantentheorie
,”
Z. Phys.
13
,
117
165
(
1923
).
5.
Buchholz
,
H.
,
The Confluent Hypergeometric Function with Special Emphasis on its Applications
,
Springer Tracts in Natural Philosophy
Vol.
15
(
Springer-Verlag
,
New York
1969
).
6.
Durran
,
R.
and
Truman
,
A.
,
Stochastic Mechanics and Stochastic Processes (Swansea, 1986)
,
Lecture Notes in Mathematics
Vol.
1325
(
Springer
,
Berlin
,
1988
), pp.
76
88
.
7.
Durran
,
R.
and
Truman
,
A.
,
Stochastic Analysis, Path Integration and Dynamics (Warwick, 1987)
,
Pitman Research Notes Mathematics Series
Vol.
200
(
Longman
,
Harlow
,
1989
), pp.
197
214
.
8.
Exner
,
P.
and
Truman
,
A.
,
Stochastics and Quantum Mechanics (Swansea, 1990)
(
World Scientific
,
River Edge, NJ
, 1992), pp.
130
150
.
9.
Filippov
,
A. F.
,
Differential Equations with Discontinuous Righthand Sides
,
Mathematics and its Applications (Soviet Series)
Vol.
18
(
Kluwer Academic
,
Dordrecht
,
1988
).
10.
Freidlin
,
M. I.
and
Wentzell
,
A. D.
,
Random Perturbations of Dynamical Systems
,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]
Vol.
260
, 2nd ed. (
Springer-Verlag
,
New York
,
1998
).
11.
Lena
,
C.
,
Delande
,
D.
, and
Gay
,
J. C.
, “
Wave functions of atomic elliptic states
,”
Europhys. Lett.
15
,
697
702
(
1991
).
12.
Nelson
,
E.
, “
Derivation of the Schrödinger equation from Newtonian mechanics
,”
Phys. Rev.
150
,
1079
1085
(
1966
).
13.
Nelson
,
E.
,
Dynamical Theories of Brownian Motion
(
Princeton University Press
,
Princeton, NJ
,
1967
).
14.
Nelson
,
E.
,
Quantum Fluctuations
,
Princeton Series in Physics
(
Princeton University Press
,
Princeton, NJ
,
1985
).
15.
Simon
,
B.
, “
Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions
,”
Ann. Inst. Henri Poincare, Sect. A
38
,
295
308
(
1983
).
16.
Simon
,
B.
, “
Semiclassical analysis of low lying eigenvalues, II. Tunneling
,”
Ann. Math.
120
,
89
118
(
1984
).
17.
Simon
,
B.
, “
Semiclassical analysis of low lying eigenvalues. III. Width of the ground state band in strongly coupled solids
,”
Ann. Phys. (N.Y.)
158
,
415
420
(
1984
).
18.
Simon
,
B.
, “
Semiclassical analysis of low lying eigenvalues. IV. The flea on the elephant
,”
J. Funct. Anal.
63
,
123
136
(
1985
).
19.
Truman
,
A.
and
Williams
,
D.
,
Recent Developments in Quantum Mechanics (Poiana Braşov, 1989)
,
Mathematical Physics Studies
Vol.
12
(
Kluwer Academic
,
Dordrecht
,
1991
).
20.
Veretennikov
,
A. Yu.
, “
On strong solutions of stochastic Itô equations with jumps
,”
Teor. Veroyatn. Ee Primen.
32
,
159
163
(
1987
).
21.
Wang
,
F.-Y.
,
Functional Inequalities, Markov Semigroups and Spectral Theory
(
Science
,
Beijing
,
2005
).
22.
Willems
,
J. L.
,
Stability Theory of Dynamical Systems
(
Nelson
,
London
,
1970
).
You do not currently have access to this content.