We give a complete solution of the Eisenhart integrability conditions in three-dimensional Minkowski space obtaining 39 orthogonally separable webs and 58 inequivalent metrics in adapted coordinate systems which permit orthogonal separation of variables for the associated Hamilton-Jacobi and wave equations. The corresponding transformations from canonical separable coordinates to canonical pseudo-Cartesian coordinates are listed for each of the 58 cases and characteristic Killing tensors are given for each of the 39 webs.
REFERENCES
1.
Benenti
, S.
, “Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation
,” J. Math. Phys.
38
, 6578
–6602
(1997
).2.
Benenti
, S.
, Chanu
, C.
, and Rastelli
, G.
, “Variable separation theory for the null Hamilton-Jacobi equation
,” J. Math. Phys.
46
, 042901
(2005
).3.
Bruce
, A. T.
, McLenaghan
, R. G.
, and Smirnov
, R. G.
, “A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables
,” J. Geom. Phys.
39
, 301
–322
(2001
).4.
Chanu
, C.
, Degiovanni
, L.
, and McLenaghan
, R. G.
, “Geometrical classification of Killing tensors on bidimensional flat manifolds
,” J. Math. Phys.
47
, 073506
(2006
).5.
Chanu
, C.
, and Rastelli
, G.
, “Fixed energy R-separation for the Schrödinger equation
,” Int. J. Geom. Methods Mod. Phys.
3
, 489
–508
(2006
).6.
7.
Eisenhart
, L. P.
, “Separable systems of Stäckel
,” Ann. Math.
35
, 284
–305
(1934
).8.
Friedlander
, F. G.
, The Wave Equation on Curved Space-Time
(Cambridge University Press
, Cambridge
, 1975
).9.
Hinterleitner
, F.
, “Global properties of orthogonal separating coordinates for the Klein-Gordon equation in dimensional flat space-time
,” Ph.D. thesis, University of Vienna
, 1994
.10.
Hinterleitner
, F.
, “Global properties of orthogonal separable coordinates for the Klein-Gordon equation in dimensional flat space-time
,” Sitzungsber. Abt. II
207
, 133
–171
(1998
).11.
Horwood
, J. T.
, and McLenaghan
, R. G.
, “Transformation to pseudo-Cartesian coordinates in locally flat spaces
,” J. Geom. Phys.
57
, 1435
–1440
(2007
).12.
Horwood
, J. T.
, McLenaghan
, R. G.
, and Smirnov
, R. G.
, “Hamilton-Jacobi theory via Cartan geometry
,” Department of Applied Mathematics and Theoretical Physics, University of Cambridge
preprints, 2007
.13.
Horwood
, J. T.
, McLenaghan
, R. G.
, and Smirnov
, R. G.
, “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space
,” Commun. Math. Phys.
259
, 679
–709
(2005
).14.
Kalnins
, E. G.
, “On the separation of variables for the Laplace equation in two- and three-dimensional Minkowski space
,” SIAM J. Math. Anal.
6
, 340
–374
(1975
).15.
Kalnins
, E. G.
, Separation of Variables for Riemannian Spaces of Constant Curvature
(Longman Scientific & Technical
, Harlow
, 1986
).16.
Kalnins
, E. G.
, and Miller
, W.
, Jr., “Lie theory and separation of variables. 9. Orthogonal R-separable coordinate systems for the wave equation
,” J. Math. Phys.
17
, 331
–355
(1976
).17.
Lawden
, D. F.
, Elliptic Functions and Applications
(Springer-Verlag
, New York
, 1989
).18.
McLenaghan
, R. G.
, and Smirnov
, R. G.
, “Intrinsic characterizations of orthogonal separability for natural Hamiltonians with scalar potentials on pseudo-Riemannian spaces
,” J. Nonlinear Math. Phys.
9
, 140
–151
(2002
).19.
McLenaghan
, R. G.
, Smirnov
, R. G.
, and The
, D.
, “An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics
,” J. Math. Phys.
45
, 1079
–1120
(2004
).20.
McLenaghan
, R. G.
, Smirnov
, R. G.
, and The
, D.
, “Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the -symmetric Yang-Mills theories of Yatsun
,” J. Math. Phys.
43
, 1422
–1440
(2002
).21.
Miller
, W.
, Jr., Symmetry and Separation of Variables
(Addison-Wesley
, Reading, MA
, 1977
).22.
Olevsky
, M. N.
, “Separation of variables of the equation , in spaces of constant curvature in two and three dimensions
,” Math. USSR. Sb.
27
, 379
–427
(1950
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.