We give a complete solution of the Eisenhart integrability conditions in three-dimensional Minkowski space obtaining 39 orthogonally separable webs and 58 inequivalent metrics in adapted coordinate systems which permit orthogonal separation of variables for the associated Hamilton-Jacobi and wave equations. The corresponding transformations from canonical separable coordinates to canonical pseudo-Cartesian coordinates are listed for each of the 58 cases and characteristic Killing tensors are given for each of the 39 webs.

1.
Benenti
,
S.
, “
Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation
,”
J. Math. Phys.
38
,
6578
6602
(
1997
).
2.
Benenti
,
S.
,
Chanu
,
C.
, and
Rastelli
,
G.
, “
Variable separation theory for the null Hamilton-Jacobi equation
,”
J. Math. Phys.
46
,
042901
(
2005
).
3.
Bruce
,
A. T.
,
McLenaghan
,
R. G.
, and
Smirnov
,
R. G.
, “
A geometrical approach to the problem of integrability of Hamiltonian systems by separation of variables
,”
J. Geom. Phys.
39
,
301
322
(
2001
).
4.
Chanu
,
C.
,
Degiovanni
,
L.
, and
McLenaghan
,
R. G.
, “
Geometrical classification of Killing tensors on bidimensional flat manifolds
,”
J. Math. Phys.
47
,
073506
(
2006
).
5.
Chanu
,
C.
, and
Rastelli
,
G.
, “
Fixed energy R-separation for the Schrödinger equation
,”
Int. J. Geom. Methods Mod. Phys.
3
,
489
508
(
2006
).
6.
Eisenhart
,
L. P.
,
Riemannian Geometry
(
Princeton University Press
,
Princeton
,
1960
).
7.
Eisenhart
,
L. P.
, “
Separable systems of Stäckel
,”
Ann. Math.
35
,
284
305
(
1934
).
8.
Friedlander
,
F. G.
,
The Wave Equation on Curved Space-Time
(
Cambridge University Press
,
Cambridge
,
1975
).
9.
Hinterleitner
,
F.
, “
Global properties of orthogonal separating coordinates for the Klein-Gordon equation in 2+1 dimensional flat space-time
,” Ph.D. thesis,
University of Vienna
,
1994
.
10.
Hinterleitner
,
F.
, “
Global properties of orthogonal separable coordinates for the Klein-Gordon equation in 2+1 dimensional flat space-time
,”
Sitzungsber. Abt. II
207
,
133
171
(
1998
).
11.
Horwood
,
J. T.
, and
McLenaghan
,
R. G.
, “
Transformation to pseudo-Cartesian coordinates in locally flat spaces
,”
J. Geom. Phys.
57
,
1435
1440
(
2007
).
12.
Horwood
,
J. T.
,
McLenaghan
,
R. G.
, and
Smirnov
,
R. G.
, “
Hamilton-Jacobi theory via Cartan geometry
,” Department of Applied Mathematics and Theoretical Physics,
University of Cambridge
preprints,
2007
.
13.
Horwood
,
J. T.
,
McLenaghan
,
R. G.
, and
Smirnov
,
R. G.
, “
Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space
,”
Commun. Math. Phys.
259
,
679
709
(
2005
).
14.
Kalnins
,
E. G.
, “
On the separation of variables for the Laplace equation Δψ+K2ψ=0 in two- and three-dimensional Minkowski space
,”
SIAM J. Math. Anal.
6
,
340
374
(
1975
).
15.
Kalnins
,
E. G.
,
Separation of Variables for Riemannian Spaces of Constant Curvature
(
Longman Scientific & Technical
,
Harlow
,
1986
).
16.
Kalnins
,
E. G.
, and
Miller
,
W.
, Jr.
, “
Lie theory and separation of variables. 9. Orthogonal R-separable coordinate systems for the wave equation ψttΔ2ψ=0
,”
J. Math. Phys.
17
,
331
355
(
1976
).
17.
Lawden
,
D. F.
,
Elliptic Functions and Applications
(
Springer-Verlag
,
New York
,
1989
).
18.
McLenaghan
,
R. G.
, and
Smirnov
,
R. G.
, “
Intrinsic characterizations of orthogonal separability for natural Hamiltonians with scalar potentials on pseudo-Riemannian spaces
,”
J. Nonlinear Math. Phys.
9
,
140
151
(
2002
).
19.
McLenaghan
,
R. G.
,
Smirnov
,
R. G.
, and
The
,
D.
, “
An extension of the classical theory of algebraic invariants to pseudo-Riemannian geometry and Hamiltonian mechanics
,”
J. Math. Phys.
45
,
1079
1120
(
2004
).
20.
McLenaghan
,
R. G.
,
Smirnov
,
R. G.
, and
The
,
D.
, “
Group invariant classification of separable Hamiltonian systems in the Euclidean plane and the O(4)-symmetric Yang-Mills theories of Yatsun
,”
J. Math. Phys.
43
,
1422
1440
(
2002
).
21.
Miller
,
W.
, Jr.
,
Symmetry and Separation of Variables
(
Addison-Wesley
,
Reading, MA
,
1977
).
22.
Olevsky
,
M. N.
, “
Separation of variables of the equation Δu+λu=0, in spaces of constant curvature in two and three dimensions
,”
Math. USSR. Sb.
27
,
379
427
(
1950
).
You do not currently have access to this content.