This paper concerns the global existence of solutions in Hi(i=1,2,4) for the nonlinear compressible Navier–Stokes equations of an initial-boundary value problem with an external force and a heat source. Some important inequalities are used and some new results are obtained.

1.
Cho
,
Y.
,
Choe
,
H. J.
, and
Kim
,
H.
, “
Unique solvability of the initial boundary value problems for compressible viscous fluids
,”
J. Math. Pures Appl.
83
,
243
275
(
2004
).
2.
Fujita-Yashima
,
H.
and
Benabidallah
,
R.
, “
Unicité de la solution de l’équation menodimensionnelle oua’ symétrie sphérique d’un gaz visqueux calorifére
,”
Rend. Circ. Mat. Palermo
42
,
195
218
(
1993
).
3.
Fujita-Yashima
,
H.
and
Benabidallah
,
R.
, “
Equation a’symétrie sphérique d’un gaz visqueux et caloeifére avec la surface libre
,”
Ann. Mat. Pura Appl.
168
,
75
117
(
1995
).
4.
Jiang
,
S.
, “
Large-time behavior of solutions to the equations of a viscous polytropic ideal gas
,”
Ann. Mat. Pura Appl.
CLXXV
,
253
275
(
1998
).
5.
Qin
,
Y.
, “
Global existence and asymptotic behavior for a viscous, heat-conductive, one-dimensional real gas with fixed and thermally insulated endpoints
,”
Nonlinear Anal. Theory, Methods Appl.
44
,
413
441
(
2001
).
6.
Qin
,
Y.
, “
Global existence and asymptotic behavior of solutions to the system in one-dimensional nonlinear thermoviscoelasticity
,”
Q. Appl. Math.
59
,
113
142
(
2001
).
7.
Qin
,
Y.
, “
Global existence and asymptotic behavior for a viscous, heat-conductive, one-dimensional real gas with fixed and constant temperature boundary conditions
,”
Adv. Differ. Equ.
7
,
129
154
(
2002
).
8.
Qin
,
Y.
, “
Exponential stability for a nonlinear one-dimensional heat-conducting viscous real gas
,”
J. Math. Anal. Appl.
272
,
507
535
(
2002
).
9.
Qin
,
Y.
, “
Universal attractor in H4 for the nonlinear one-dimensional compressible Navier-Stokes equations
,”
J. Differ. Equations
207
,
21
72
(
2004
).
10.
Qin
,
Y.
, “
Exponential stability for the compressible Navier-Stokes equations with the cylinder symmetry in R3
,”
IMA J. Appl. Math.
70
,
1
18
(
2005
).
11.
Qin
,
Y.
,
Ma
,
T. F.
,
Cavalcanti
,
M. M.
, and
Andrade
,
D.
Exponential stability in H4 for the Navier-Stokes equations of compressible and heat conductive fluid
,”
Commun. Pure Appl. Anal.
4
,
635
664
(
2005
).
12.
Qin
,
Y.
and
Muńoz Rivera
,
J. E.
, “
Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory
,”
Nonlinear Anal. Theory, Methods Appl.
51
,
11
32
(
2002
).
13.
Qin
,
Y.
and
Muńoz Rivera
,
J. E.
, “
Large-time behaviour of energy in elasticity
,”
J. Elast.
66
,
171
184
(
2002
).
14.
Qin
,
Y.
and
Mu’noz Rivera
,
J. E.
, “
Polynomial Decay for the Energy with an Acoustic Boundary Condition
,
Appl. Math. Lett.
16
,
249
256
(
2003
).
15.
Qin
,
Y.
and
Muńoz Rivera
,
J. E.
, “
Global existence and exponential stability of solutions to thermoelastic equations of hyperbolic type
,”
J. Elast.
5
,
125
145
(
2005
).
16.
Xu
,
C.-J.
and
Yang
,
T.
, “
Local existence with physical vacuum boundary condition to Euler equations with damping
,”
J. Differ. Equations
210
,
217
231
(
2005
).
17.
Yanagi
,
S.
, “
Existence of periodic solutions for a one-dimensional isentropic model system of compressible viscous gas
,”
Nonlinear Anal. Theory, Methods Appl.
46
,
279
298
(
2001
).
18.
Zheng
,
S.
,
Nonlinear Evolution Equations
,
Pitman Monographs and Surveys in Pure and Applied Mathematics
Vol.
133
(
CRC
,
Boca Raton, FL
,
2004
).
19.
Zheng
,
S.
and
Qin
,
Y.
, “
Universal attractors for the Navier-Stokes equations of compressible and heat-conductive fluid in bounded annular domains in Rn
,”
Arch. Ration. Mech. Anal.
160
,
153
179
(
2001
).
20.
Zimmer
,
J.
, “
Global existence for a nonlinear system in thermoviscoelasticity with nonconvex energy
,
J. Math. Anal. Appl.
292
,
589
604
(
2004
).
You do not currently have access to this content.