This paper presents a geometric discretization of elasticity when the ambient space is Euclidean. This theory is built on ideas from algebraic topology, exterior calculus, and the recent developments of discrete exterior calculus. We first review some geometric ideas in continuum mechanics and show how constitutive equations of linearized elasticity, similar to those of electromagnetism, can be written in terms of a material Hodge star operator. In the discrete theory presented in this paper, instead of referring to continuum quantities, we postulate the existence of some discrete scalar-valued and vector-valued primal and dual differential forms on a discretized solid, which is assumed to be a triangulated domain. We find the discrete governing equations by requiring energy balance invariance under time-dependent rigid translations and rotations of the ambient space. There are several subtle differences between the discrete and continuous theories. For example, power of tractions in the discrete theory is written on a layer of cells with a nonzero volume. We obtain the compatibility equations of this discrete theory using tools from algebraic topology. We study a discrete Cosserat medium and obtain its governing equations. Finally, we study the geometric structure of linearized elasticity and write its governing equations in a matrix form. We show that, in addition to constitutive equations, balance of angular momentum is also metric dependent; all the other governing equations are topological.

1.
Abraham
,
R.
,
Marsden
,
J. E.
, and
Ratiu
,
T.
,
Manifolds, Tensor Analysis, and Applications
(
Springer-Verlag
,
New York
,
1988
).
2.
Beauće
,
V. d.
, and
Sen
,
S.
, “
Discretizing geometry and preserving topology I: A discrete exterior calculus
,” preprint,
2006
(unpublished).
3.
Bossavit
,
A.
,
Computational Electromagnetism
(
Academic
,
New York
,
1998
).
4.
Bossavit
,
A.
, “
Differential forms and the computation of fields and forces in electromagnetism
,”
Eur. J. Mech. B/Fluids
10
,
474
488
(
1991
).
5.
Bossavit
,
A.
, “
Extrusion, contraction: their discretization via Whitney forms
,”
Compel
22
,
470
480
(
2003
).
6.
Burke
,
W. L.
, “
Manifestly parity invariant electromagnetic theory and twisted tensors
,”
J. Math. Phys.
24
,
65
69
(
1983
).
7.
Cairns
,
S. S.
, “
On the triangulation of regular loci
,”
Ann. Math.
35
,
579
587
(
1934
).
8.
Chard
,
J. A.
, and
Shapiro
,
V.
, “
A multivector data structure for differential forms and equations
,”
Math. Comput. Simul.
54
,
33
64
(
2001
).
9.
Chew
,
W. C.
, “
Electromagnetic theory on a lattice
,”
J. Appl. Phys.
75
,
4843
4850
(
2001
).
10.
Cosmi
,
F.
, “
Numerical solution of plane elasticity problems with the cell method
,”
Comput. Model. Eng. Sci.
2
,
365
372
(
2001
).
11.
Desbrun
,
M.
,
Hirani
,
A. N.
,
Leok
,
M.
, and
Marsden
,
J. E.
, “
Discrete exterior calculus
,” preprint,
2003
(unpublished).
12.
Deschamps
,
G. A.
, “
Electromagnetics and differential forms
,”
Proc. IEEE
69
,
676
696
(
1981
).
13.
De Rham
,
G.
,
Differentiable Manifolds
(
Springer-Verlag
,
New York
,
1984
).
14.
Ferretti
,
E.
, “
Crack propagation modeling by remeshing using the cell method (CM)
,”
Comput. Model. Eng. Sci.
4
,
51
72
(
2003
).
15.
Flanders
,
H.
,
Differential Forms and Application to Physical Sciences
(
Dover
,
New York
,
1990
).
16.
Frankel
,
T.
,
The Geometry of Physics: An Introduction
(
Cambridge University Press
,
Cambridge
,
1997
).
17.
Green
,
A. E.
, and
Rivilin
,
R. S.
, “
On Cauchy’s equations of motion
,”
Z. Angew. Math. Phys.
15
,
290
293
(
1964
).
18.
Gross
,
P.
, and
Kotiuga
,
P. R.
,
Electromagnetic Theory and Computation: A Topological Approach
(
Cambridge University Press
,
Cambridge
,
2004
).
19.
Guillemin
,
V.
, and
Pollack
,
A.
,
Differential Topology
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1974
).
20.
Hatcher
,
A.
,
Algebraic Topology
(
Cambridge
,
New York
,
2002
).
21.
Hirani
,
A. N.
, Ph.D. thesis,
California Institute of Technology
,
2003
.
22.
Kanso
,
E.
,
Arroyo
,
M.
,
Tong
,
Y.
,
Yavari
,
A.
,
Marsden
,
J. E.
, and
Desbrun
,
M.
, “
On the geometric character of force in continuum mechanics
,”
ZAMP
58
,
843
856
(
2007
).
23.
Lee
,
J. M.
,
Introduction to Topological Manifolds
(
Springer
,
New York
,
2000
).
24.
Lee
,
J. M.
,
Riemannian Manifold An Introduction to Curves
(
Springer-Verlag
,
New York
,
1997
).
25.
Lew
,
A.
,
Marsden
,
J. E.
,
Ortiz
,
M.
, and
West
,
M.
, “
Asynchronous variational integrators
,”
Arch. Ration. Mech. Anal.
167
,
85
146
(
2003
).
26.
Lovelock
,
D.
, and
Rund
,
H.
,
Tensors, Differential Forms and Variational Principles
(
Dover
,
New York
,
1989
).
27.
Marsden
,
J. E.
, and
Hughes
,
T. J. R.
,
Mathematical Foundations of Elasticity
(
Dover
,
New York
,
1983
).
28.
Munkres
,
J.
,
Elements of Algebraic Topology
(
Springer
,
New York
/
Addison-Wesley
,
Menlo Park, CA
,
1984
).
29.
Nakahara
,
M.
,
Geometry, Topology and Physics
(
Taylor & Francis
,
New York
,
2003
).
30.
Pani
,
M.
,
Zanette
,
N.
, and
Battelino
,
D.
, “
Use of the cell method for plane elastic problems in geotechnique
,”
Comput. Mater. Sci.
26
,
120
128
(
2003
).
31.
Patnaik
,
S. N.
,
Berke
,
L.
, and
Gallagher
,
R. H.
, “
Compatibility Conditions of Structural Mechanics for Finite-Element Analysis
,”
AIAA J.
29
,
820
829
(
1991
).
32.
Sibson
,
R.
, “
Locally equiangular triangulations
,”
Comput. J.
21
,
243
245
(
1978
).
33.
Simo
,
J. C.
, and
Marsden
,
J. E.
, “
On the rotated stress tensor and the material version of the Doyle-Ericksen formula
,”
Arch. Ration. Mech. Anal.
86
,
213
231
(
1984
).
34.
Teixeira
,
F. L.
, and
Chew
,
W. C.
, “
Lattice electeromagnetic theory from a topological viewpoint
,”
J. Math. Phys.
40
,
169
187
(
1999
).
35.
Tonti
,
E.
, “
A direct discrete formulation of field laws: The cell method
,”
Comput. Model. Eng. Sci.
2
,
237
258
(
2001
).
36.
Tonti
,
E.
,
On the Formal Structure of Physical Theories
(
Instituto Di Matematica Del Politecnico Di Milano
,
Milan
,
1975
).
37.
Tonti
,
E.
, “
The reason for analogies between physical theories
,”
Appl. Math. Model.
1
,
37
50
(
1976
).
38.
Weyl
,
H.
,
Space, Time, Matter
(
Dover
,
New York
,
1922
).
39.
Wilson
,
S. O.
, e-print arXiv:math/0505227.
40.
Yavari
,
A.
,
Marsden
,
J. E.
, and
Ortiz
,
M.
, “
On the spatial and material covariant balance laws in elasticity
,”
J. Math. Phys.
47,
85
112
(
2006
).
41.
Yavari
,
A.
, and
Ozakin
,
A.
, “
Covariance in linearized elasticity
,”
ZAMP
(to be published).
You do not currently have access to this content.