The mincut graph bisection problem involves partitioning the n vertices of a graph into disjoint subsets, each containing exactly n/2 vertices, while minimizing the number of “cut” edges with an endpoint in each subset. When considered over sparse random graphs, the phase structure of the graph bisection problem displays not only certain familiar properties but also some surprises. It is known that when the mean degree is below the critical value of 2log2, the cutsize is zero with high probability. We study how the minimum cutsize increases with mean degree above this critical threshold, finding a new analytical upper bound that improves considerably upon previous bounds. Combined with recent results on expander graphs, our bound suggests the unusual scenario that random graph bisection is replica symmetric up to and beyond the critical threshold, with a replica symmetry breaking transition possibly taking place above the threshold. An intriguing algorithmic consequence is that although the problem is NP-hard, we can conceivably find near-optimal cutsizes (whose ratio to the optimal value approaches 1 asymptotically) in polynomial time for typical instances near the phase transition.

1.
Alpert
,
C. J.
and
Kahng
A. B.
, “
Recent directions in netlist partitioning: a survey
,”
Dig. Tech. Pap. - Symp. VLSI Technol.
19
,
1
(
1995
).
2.
Benjamini
,
I.
,
Kozma
,
G.
, and
Wormald
,
N.
, “
The mixing time of the giant component of a random graph
,” e-print arXiv:math.PR/0610459.
3.
Benjamini
,
I.
and
Mossel
,
E.
, “
On the mixing time of a simple random walk on the supercritical percolation cluster
,”
Probab. Theory Relat. Fields
125
,
408
(
2003
).
4.
Biroli
,
G.
,
Monasson
,
R.
, and
Weigt
,
M.
, “
A variational description of the ground state structure in random satisfiability problems
,”
Eur. Phys. J. B
14
,
551
(
2000
).
5.
Boettcher
,
S.
, “
Extremal Optimization of Graph Partitioning at the Percolation Threshold
,”
J. Phys. A
32
,
5201
(
1999
).
6.
Boettcher
,
S.
and
Percus
,
A. G.
, “
Nature’s way of optimizing
,”
Artif. Intell.
119
,
275
(
2000
).
7.
Boettcher
,
S.
and
Percus
,
A. G.
, “
Extremal optimization at the phase transition of the 3-coloring problem
,”
Phys. Rev. E
69
,
066703
(
2004
).
8.
Bollobas
,
B.
,
Random Graphs
(
Cambridge University Press
,
Cambridge
,
2001
).
9.
Boykov
,
Y.
,
Veksler
,
O.
, and
Zabih
,
R.
, “
Fast approximate energy minimization via graph cuts
,”
IEEE Trans. Pattern Anal. Mach. Intell.
23
,
1222
(
2001
).
10.
Cheeger
,
J.
, “
A lower bound for the smallest eigenvalue of the Laplacian
,” in
Problems in Analysis (Papers Dedicated to Salomon Bochner, 1969)
, edited by
R. C.
Gunning
(
Princeton University Press
,
Princeton
,
1970
), pp.
195
199
.
11.
Cheeseman
,
P.
,
Kanefsky
,
B.
, and
Taylor
,
W. F.
, “
Where the really hard problems are
,”
Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI’91)
(
Morgan Kaufmann
,
San Mateo, CA
,
1991
), pp.
331
337
.
12.
Erdős
,
P.
and
Rényi
,
A.
, “
On Random Graphs I
,”
Publ. Math. (Debrecen)
6
,
290
(
1959
).
13.
Fu
,
Y.
and
Anderson
,
P. W.
, “
Application of statistical mechanics to NP-complete problems in combinatorial optimisation
,”
J. Phys. A
19
,
1605
(
1986
).
14.
Garey
,
M. R.
and
Johnson
,
D. S.
,
Computers and Intractability
(
Freeman
,
San Francisco
,
1979
).
15.
Goel
,
A.
,
Rai
,
S.
, and
Krishnamachari
,
B.
, “
Monotone properties of random geometric graphs have sharp thresholds
,”
Ann. Appl. Probab.
15
,
2535
(
2005
).
16.
Goldberg
,
M. K.
and
Lynch
,
J. F.
, “
Lower and upper bounds for the bisection width of a random graph
,”
Congr. Numer.
49
,
19
(
1985
).
17.
Gonçalves
,
B.
,
Istrate
,
G.
,
Percus
,
A. G.
, and
Boettcher
,
S.
, “
The core peeling algorithm for graph bisection: an experimental evaluation
,”
Los Alamos National Laboratory
Technical Report No. LA-UR 06–6863,
2006
.
18.
Holme
,
P.
,
Kim
,
B. J.
,
Yoon
,
C. N.
, and
Han
,
S. K.
, “
Attack vulnerability of complex networks
,”
Phys. Rev. E
65
,
056109
(
2002
).
19.
Istrate
,
G.
,
Kasiviswanathan
,
S.
, and
Percus
,
A. G.
, “
The cluster structure of minimum bisections of sparse random graphs
,”
Los Alamos National Laboratory
Technical Report No. LA-UR 06–6566,
2006
.
20.
Istrate
,
G.
,
Kasiviswanathan
,
S.
, and
Percus
,
A. G.
(unpublished).
21.
Janson
,
S.
,
Łuczak
,
T.
, and
Ruciński
,
A.
,
Random Graphs
(
Wiley
,
New York
,
2000
).
22.
Kanter
,
I.
and
Sompolinsky
,
H.
, “
Mean-field theory of spin-glasses with finite coordination number
,”
Phys. Rev. Lett.
58
,
164
(
1987
).
23.
Kolmogorov
,
V.
and
Zabih
,
R.
, “
What energy functions can be minimized via graph cuts?
,”
IEEE Trans. Pattern Anal. Mach. Intell.
26
,
147
(
2004
).
24.
Liao
,
W.
, “
Graph bipartitioning problem
,”
Phys. Rev. Lett.
59
,
1625
(
1987
).
25.
Liao
,
W.
, “
Replica-symmetric solution of the graph-bipartitioning problem
,”
Phys. Rev. A
37
,
587
(
1988
).
26.
Łuczak
,
M. J.
and
McDiarmid
,
C.
, “
Bisecting sparse random graphs
,”
Random Struct. Algorithms
18
,
31
(
2001
).
27.
Mézard
,
M.
and
Parisi
,
G.
, “
Mean-field theory of randomly frustrated systems with finite connectivity
,”
Europhys. Lett.
3
,
1067
(
1987
).
28.
Mézard
,
M.
,
Parisi
,
G.
,and
Zecchina
,
R.
, “
Analytic and algorithmic solutions of random satisfiability problems
,”
Science
297
,
812
(
2002
).
29.
Mézard
,
M.
and
Zecchina
,
R.
, “
Random K-satisfiability problem: from an analytical solution to an efficient algorithm
,”
Phys. Rev. E
66
,
056126
(
2002
).
30.
Mitchell
,
D. G.
,
Selman
,
B.
, and
Levesque
,
H. J.
, “
Hard and easy distributions for SAT problems
,”
Proceedings of the Tenth National Conference on Artificial Intelligence
(
AAAI Press
,
Menlo Park, CA
,
1992
), pp.
459
465
.
31.
Penrose
,
M. D.
,
Random Geometric Graphs
(
Oxford University Press
,
Oxford
,
2003
).
32.
Percus
,
A. G.
,
Istrate
,
G.
, and
Moore
,
C.
,
Computational Complexity and Statistical Physics
(
Oxford University Press
,
Oxford
,
2006
).
33.
Pittel
,
B.
, “
On tree census and the giant component in sparse random graphs
,”
Random Struct. Algorithms
1
,
311
(
1990
).
You do not currently have access to this content.