Quantum annealing is a generic name of quantum algorithms that use quantum-mechanical fluctuations to search for the solution of an optimization problem. It shares the basic idea with quantum adiabatic evolution studied actively in quantum computation. The present paper reviews the mathematical and theoretical foundations of quantum annealing. In particular, theorems are presented for convergence conditions of quantum annealing to the target optimal state after an infinite-time evolution following the Schrödinger or stochastic (Monte Carlo) dynamics. It is proved that the same asymptotic behavior of the control parameter guarantees convergence for both the Schrödinger dynamics and the stochastic dynamics in spite of the essential difference of these two types of dynamics. Also described are the prescriptions to reduce errors in the final approximate solution obtained after a long but finite dynamical evolution of quantum annealing. It is shown there that we can reduce errors significantly by an ingenious choice of annealing schedule (time dependence of the control parameter) without compromising computational complexity qualitatively. A review is given on the derivation of the convergence condition for classical simulated annealing from the view point of quantum adiabaticity using a classical-quantum mapping.

1.
M. R.
Garey
and
D. S.
Johnson
,
Computers and Intractability: A Guide to the Theory of NP-Completeness
(
Freeman
,
San Francisco
,
1979
).
2.
A. K.
Hartmann
and
M.
Weigt
,
Phase Transitions in Combinatorial Optimization Problems: Basics, Algorithms and Statistical Mechanics
(
Wiley-VCH
,
Weinheim
,
2005
).
3.
K.
Helsgaun
,
Eur. J. Oper. Res.
126
,
106
(
2000
).
4.
S.
Kirkpatrick
,
S. D.
Gelett
, and
M. P.
Vecchi
,
Science
220
,
671
(
1983
).
5.
E.
Aarts
and
J.
Korst
,
Simulated Annealing and Boltzmann Machines: A Stochastic Approach to Combinatorial Optimization and Neural Computing
(
Wiley
,
New York
,
1984
).
6.
A. B.
Finnila
,
M. A.
Gomez
,
C.
Sebenik
,
S.
Stenson
, and
J. D.
Doll
,
Chem. Phys. Lett.
219
,
343
(
1994
).
7.
T.
Kadowaki
and
H.
Nishimori
,
Phys. Rev. E
58
,
5355
(
1998
).
8.
T.
Kadowaki
, “
Study of optimization problems by quantum annealing
,” PhD thesis,
Tokyo Institute of Technology
,
1999
;
9.
A.
Das
and
B. K.
Charkrabarti
,
Quantum Annealing and Related Optimization Methods
,
Lecture Notes in Physics
Vol.
679
(
Springer
,
Berlin
,
2005
).
10.
G. E.
Santoro
and
E.
Tosatti
,
J. Phys. A
39
,
R393
(
2006
).
11.
A.
Das
and
B. K.
Chakrabarti
, e-print arXiv:0801.2193;
Quantum Annealing and Analog Quantum Computation
,”
Rev. Mod. Phys.
(to be published).
12.
B.
Apolloni
,
C.
Carvalho
, and
D.
de Falco
,
Stochastic Proc. Appl.
33
,
233
(
1989
).
13.
B.
Apolloni
,
N.
Cesa-Bianchi
, and
D.
de Falco
, in
Stochastic Processes, Physics and Geometry
, edited by
S.
Albeverio
,
G.
Casati
,
U.
Cattaneo
,
D.
Merlini
, and
R.
Moresi
(
World Scientific
,
Singapore
,
1990
), p.
97
.
14.
G. E.
Santoro
,
R.
Martoňák
,
E.
Tosatti
, and
R.
Car
,
Science
295
,
2427
(
2002
).
15.
R.
Martoňák
,
G. E.
Santoro
, and
E.
Tosatti
,
Phys. Rev. B
66
,
094203
(
2002
).
16.
S.
Suzuki
and
M.
Okada
,
J. Phys. Soc. Jpn.
74
,
1649
(
2005
).
17.
M.
Sarjala
,
V.
Petäjä
, and
M.
Alava
,
J. Stat. Mech.: Theory Exp.
,
P01008
(
2006
).
18.
S.
Suzuki
,
H.
Nishimori
, and
M.
Suzuki
,
Phys. Rev. E
75
,
051112
(
2007
).
19.
R.
Martoňák
,
G. E.
Santoro
, and
E.
Tosatti
,
Phys. Rev. E
70
,
057701
(
2004
).
20.
L.
Stella
,
G. E.
Santoro
, and
E.
Tosatti
,
Phys. Rev. B
72
,
014303
(
2005
).
21.
L.
Stella
,
G. E.
Santoro
, and
E.
Tosatti
,
Phys. Rev. B
73
,
144302
(
2006
).
22.
A.
Das
,
B. K.
Chakrabarti
, and
R. B.
Stinchcombe
,
Phys. Rev. E
72
,
026701
(
2005
).
23.
H. F.
Trotter
,
Proc. Am. Math. Soc.
10
,
545
(
1959
).
24.
M.
Suzuki
,
Prog. Theor. Phys.
46
,
1337
(
1971
).
25.
D. P.
Landau
and
K.
Binder
,
A Guide to Monte Carlo Simulations in Statistical Physics
(
Cambridge University Press
,
Cambridge, England
,
2000
), Chap. 8.
26.
E.
Farhi
,
J.
Goldstone
,
S.
Gutomann
, and
M.
Sipser
, e-print arXiv:quant-ph/0001106.
27.
A.
Mizel
,
D. A.
Lidar
, and
M.
Mitchel
,
Phys. Rev. Lett.
99
,
070502
(
2007
).
28.
S.
Morita
, “
Analytic study of quantum annealing
,” PhD thesis,
Tokyo Institute of Technology
,
2008
.
29.
S.
Morita
and
H.
Nishimori
,
J. Phys. Soc. Jpn.
76
,
064002
(
2007
).
30.
A.
Messiah
,
Quantum Mechanics
(
Wiley
,
New York
,
1976
).
31.
R. D.
Somma
,
C. D.
Batista
, and
G.
Ortiz
,
Phys. Rev. Lett.
99
,
030603
(
2007
).
32.
E.
Hopf
,
J. Math. Mech.
12
,
683
(
1963
).
33.
S.
Geman
and
D.
Geman
,
IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-6
,
721
(
1984
).
34.
H.
Nishimori
and
J.
Inoue
,
J. Phys. A
31
,
5661
(
1998
).
35.
H.
Nishimori
and
Y.
Nonomura
,
J. Phys. Soc. Jpn.
65
,
3780
(
1996
).
36.
E.
Seneta
,
Non-negative Matrices and Markov Chains
(
Springer
,
New York
,
2006
).
37.
S.
Morita
,
J. Phys. Soc. Jpn.
76
,
104001
(
2007
).
38.
L. D.
Landau
and
E. M.
Lifshitz
,
Quantum Mechanics: Non-Relativistic Theory
(
Pergamon
,
Oxford
,
1965
).
39.
C.
Zener
,
Proc. R. Soc. London, Ser. A
137
,
696
(
1932
).
40.
H. W.
Press
,
A. S.
Tuekolosky
,
T. W.
Vettering
, and
P. B.
Flannery
,
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
,
Cambridge, England
,
1992
).
41.
L. K.
Grover
,
Phys. Rev. Lett.
79
,
325
(
1997
).
42.
J.
Roland
and
N. J.
Cerf
,
Phys. Rev. A
65
,
042308
(
2002
).
43.
S.
Morita
and
H.
Nishimori
,
J. Phys. A
39
,
13903
(
2006
).
44.
C.
Tsallis
and
D. A.
Stariolo
,
Physica A
233
,
395
(
1996
).
45.
D. M.
Ceperley
and
B. J.
Alder
,
Phys. Rev. Lett.
45
,
566
(
1980
).
46.
N.
Trivedi
and
D. M.
Ceperley
,
Phys. Rev. B
41
,
4552
(
1990
).
47.
L.
Stella
and
G. E.
Santoro
,
Phys. Rev. E
75
,
036703
(
2007
).
You do not currently have access to this content.