With the previous results for the analytical blowup solutions of the -dimensional Euler–Poisson equations, we extend the same structure to construct an analytical family of solutions for the isothermal Navier–Stokes equations and pressureless Navier–Stokes equations with density-dependent viscosity.
REFERENCES
1.
Chen
, G. Q.
and Wang
, D. H.
, The Cauchy Problem for the Euler Equations for Compressible Fluids
, Handbook of Mathematical Fluid Dynamics
, Vol. I
(North-Holland
, Amsterdam
, 2002
), pp. 421
–543
.2.
Deng
, Y. B.
, Xiang
, J. L.
, and Yang
, T.
, “Blowup phenomena of solutions to Euler-Poisson equations
,” J. Math. Anal. Appl.
286
, 295
(2003
).3.
Goldreich
, P.
and Weber
, S.
, “Homologously collapsing stellar cores
,” Astrophys. J.
238
, 991
(1980
).4.
Lions
, P. L.
, Mathematical Topics in Fluid Mechanics
(Clarendon
, Oxford
, 1998
), Vols. 1
and 2.5.
Li
, T. H.
, “Some special solutions of the multidimensional Euler equations in
,” Commun. Pure Appl. Anal.
4
, 757
(2005
).6.
Lin
, S. S.
, “Stability of gaseous stars in radially symmetric motions
,” SIAM J. Math. Anal.
28
, 539
(1997
).7.
Makino
, T.
, “Blowing up solutions of the Euler-Poisson equation for the evolution of the gaseous stars
,” Transp. Theory Stat. Phys.
21
, 615
(1992
).8.
Makino
, T.
, in Patterns and Wave-Qualitative Analysis of Nonlinear Differential Equations
, edited by T.
Nishida
, M.
Mimura
, and H.
Fujii
(North-Holland
, 1986
), pp. 459
–479
.9.
Nishida
, T.
, “Equations of fluid dynamics-free surface problems
,” Commun. Pure Appl. Math.
39
, S221
(1986
).10.
T. C.
Sideris
, “Formation of singularities in three-dimensional compressible fluids
,” Commun. Math. Phys.
101
, 475
(1985
).11.
Yang
, T.
, Yao
, Z. -A.
, and Zhu
, C.
, “Changjiang compressible Navier-Stokes equations with density-dependent viscosity and vacuum
,” Commun. Partial Differ. Equ.
26
, 965
(2001
).12.
Yuen
, M. W.
, “Blowup solutions for a class of fluid dynamical equations in
,” J. Math. Anal. Appl.
329
, 1064
(2007
).13.
Yuen
, M. W.
, “Analytical blowup solutions to the 2-dimensional isothermal Euler-Poisson equations of gaseous stars
,” J. Math. Anal. Appl.
341
, 445
(2008
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.