We use the stochastic quantization method to study systems with complex valued path integral weights. We assume a Langevin equation with a memory kernel and Einsteinβs relations with colored noise. The equilibrium solution of this non-Markovian Langevin equation is analyzed. We show that for a large class of elliptic non-Hermitian operators acting on scalar functions on Euclidean space, which define different models in quantum field theory, converge to an equilibrium state in the asymptotic limit of the Markov parameter β . Moreover, as we expected, we obtain the Schwinger functions of the theory.
REFERENCES
1.
2.
B.
βSakita
, Quantum Theory of Many Variable Systems and Fields
(World Scientific
, Singapore
, 1985
).3.
P.
βDamgaard
and H.
βHeiffel
, Stochastic Quantization
(World Scientific
, Singapore
, 1988
).4.
5.
P.
βDamgaard
and H.
βHeiffel
, Phys. Rep.
β152
, 227
(1987
).6.
G.
βMenezes
and N. F.
βSvaiter
, J. Phys. A: Math. Theor.
β40
, 8545
(2007
).7.
8.
9.
H.
βHuffel
and P. V.
βLandshoff
, Nucl. Phys. B
β260
, 545
(1985
).10.
D. J. E.
βCallaway
, F.
βCooper
, J. R.
βKlauder
, and H. A.
βRose
, Nucl. Phys. B
β262
, 19
(1985
).11.
G.
βParisi
, Phys. Lett.
β131B
, 393
(1983
).12.
J. R.
βKlauder
and W. P.
βPeterson
, J. Stat. Phys.
β39
, 53
(1985
).13.
J. R.
βKlauder
, Phys. Rev. A
β29
, 2036
(1984
).14.
J.
βAmbjorn
and S. K.
βYang
, Phys. Lett.
β165
, 140
(1985
).15.
H.
βOkamoto
, K.
βOkano
, L.
βSchulke
, and S.
βTanaka
, Nucl. Phys. B
β324
, 684
(1989
).16.
T.
βFukai
, H.
βNakazato
, J.
βOhba
, K.
βOkano
, and Y.
βYamanaka
, Prog. Theor. Phys.
β69
, 1600
(1983
).17.
P. H.
βDamgaard
and K.
βTsokos
, Nucl. Phys. B
β235
, 75
(1984
).18.
19.
F.
βFerrari
and H.
βHufel
, Phys. Lett. B
β261
, 47
(1991
).20.
G.
βMenezes
and N. F.
βSvaiter
, J. Math. Phys.
β47
, 073507
(2006
).21.
G.
βMenezes
and N. F.
βSvaiter
, Physica A
β374
, 617
(2007
).22.
L. L.
βSalcedo
, Phys. Lett. B
β305
, 125
(1993
).23.
H.
βGausterer
, J. Phys. A
β27
, 1325
(1994
).24.
25.
26.
R.
βZwanzig
, K. S. J.
βNordholm
, and W. C.
βMitchell
, Phys. Rev. A
β5
, 2680
(1972
).27.
M.
βKac
and J.
βLogan
, in Fluctuation Phenomena
, edited by E. W.
βMontroll
and J. L.
βLebowitz
(North Holland
, Amsterdam
, 1974
).28.
R.
βZwanzig
, Non-Equilibrium Statistical Mechanics
(Oxford University Press
, New York
, 2001
).29.
R.
βKubo
, M.
βToda
, and N.
βHashitsume
, Statistical Physics
(Springer-Verlag
, Heidelberg
, 1991
).30.
G.
βParisi
and N.
βSourlas
, Nucl. Phys. B
β206
, 321
(1982
).31.
E.
βFloratos
and J.
βIliopoulos
, Nucl. Phys. B
β214
, 392
(1983
).32.
W.
βGrimus
, Z. Phys. C
β18
, 129
(1983
).33.
R. F.
βFox
, J. Stat. Phys.
β16
, 259
(1977
).34.
35.
H.
βBateman
, Tables of Integral Transformations
(McGraw-Hill Book Company
, New York
, 1954
), Vol. 1
.Β© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.