An invariant characterization of the rotationally symmetric R-separable webs for the Laplace equation in Euclidean space is given in terms of invariants and covariants of a real binary quartic canonically associated with the characteristic conformal Killing tensor which defines the webs.

1.
Benenti
,
S.
, “
Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation
,”
J. Math. Phys.
38
,
6578
6602
(
1997
).
2.
Benenti
,
S.
,
Chanu
,
C.
, and
Rastelli
,
G.
, “
Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schroedinger equation. 1 The completeness and Robertson conditions
,”
J. Math. Phys.
43
,
5183
5222
(
2002
).
3.
Benenti
,
S.
,
Chanu
,
C.
, and
Rastelli
,
G.
, “
Variable-separation theory for the null Hamilton-Jacobi equation
,”
J. Math. Phys.
46
,
042901
(
2005
).
4.
Bôcher
,
M.
,
Über die Reihenentwickelungen der Potentialtheorie (mit einem Vorwort von Felix Klein)
(
Teubner
,
Leipzig
,
1894
).
5.
Boyer
,
C. P.
,
Kalnins
,
E. G.
, and
Miller
, Jr.,
W.
, “
Symmetry and separation of variables for the Helmholtz and Laplace equations
,”
Nagoya Math. J.
60
,
35
80
(
1976
).
6.
Boyer
,
C. P.
,
Kalnins
,
E. G.
, and
Miller
, Jr.,
W.
, “
R-separable coordinates for three-dimensional complex Riemannian spaces
,”
Trans. Am. Math. Soc.
242
,
355
376
(
1978
).
7.
Chanachowicz
,
M.
,
Chanu
,
C. M.
, and
McLenaghan
,
R. G.
, e-print arXiv:0708.2163.
8.
Chanu
,
C.
and
Rastelli
,
G.
, “
Fixed-energy R-separation for Schrödinger equation
,”
Int. J. Geom. Methods Mod. Phys.
3
,
489
508
(
2006
).
9.
Chanu
,
C.
and
Rastelli
,
G.
, “
Eigenvalues of Killing tensors and separable webs on Riemannian and pseudo-Riemannian manifolds
,”
Symmetry, Integr. Geom.: Methods Appl.
3
,
1
21
(
2007
).
10.
Degiovanni
,
L.
and
Rastelli
,
G.
, “
Complex variables for separation of the Hamilton-Jacobi equation on real pseudo-Riemannian manifolds
,”
J. Math. Phys.
48
,
073519
(
2007
).
11.
Eastwood
,
M.
, “
Higher symmetries of the Laplacian
,”
Ann. Math.
161
,
1645
1665
(
2005
).
12.
Eisenhart
,
L. P.
, “
Separable systems of Stäckel
,”
Ann. Math.
35
,
284
305
(
1934
).
13.
Gurevich
,
G. B.
,
Foundations of the Theory of Algebraic Invariants
(
Noordhoff
,
Groningen
,
1964
).
14.
Horwood
,
J. T.
,
McLenaghan
,
R. G.
, and
Smirnov
,
R. G.
, “
Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space
,”
Commun. Math. Phys.
259
,
679
709
(
2005
).
15.
Miller
, Jr.,
W.
,
Symmetry and Separation of Variables
(
Addison-Wesley
,
Reading, MA
,
1977
).
16.
Kalnins
,
E. G.
,
Separation of Variables for Riemannian Spaces of Constant Curvature
,
Pitman Monographs and Surveys in Pure and Applied Mathematics
Vol.
28
(
Longman Scientific & Technical
,
Essex
,
1986
).
17.
Moon
,
P.
and
Spencer
,
D. E.
, “
Separability in a class of coordinate systems
,”
J. Franklin Inst.
254
,
227
242
(
1952
).
18.
Moon
,
P.
and
Spencer
,
D. E.
,
Field Theory Handbook
(
Springer-Verlag
,
Berlin
,
1961
).
19.
Nijenhuis
,
A.
, “
Xn1-forming sets of eigenvectors
,”
Neder. Akad. Wetensch. Proc.
51A
,
200
212
(
1951
).
20.
Olver
,
P. J.
,
Classical Invariant Theory
,
London Mathematical Society Study Texts
Vol.
44
(
Cambridge University Press
,
Cambridge
,
1999
).
21.
Olver
,
P. J.
,
Applications of Lie Groups to Differential Equations
,
Graduate Texts in Mathematics
Vol.
107
, 2nd ed. (
Springer
,
New York
,
1993
).
22.
Rani
,
R.
,
Edgar
,
S. B.
, and
Barnes
,
A.
, “
Killing tensors and conformal Killing tensors from conformal Killing vectors
,”
Class. Quantum Grav.
20
,
1923
1942
(
2003
).
23.
Schouten
,
J. A.
, “
Über Differentalkomitanten zweier kontravarianter Grössen
,”
Proc. Kon. Ned. Akad. Amsterdam
43
,
449
452
(
1940
).
24.
Tonolo
,
A.
, “
Sulle varietà Riemanniane normali a tre dimensioni
,”
Pont. Acad. Sci. Acta
13
,
29
53
(
1949
).
You do not currently have access to this content.