An invariant characterization of the rotationally symmetric -separable webs for the Laplace equation in Euclidean space is given in terms of invariants and covariants of a real binary quartic canonically associated with the characteristic conformal Killing tensor which defines the webs.
REFERENCES
1.
Benenti
, S.
, “Intrinsic characterization of the variable separation in the Hamilton-Jacobi equation
,” J. Math. Phys.
38
, 6578
–6602
(1997
).2.
Benenti
, S.
, Chanu
, C.
, and Rastelli
, G.
, “Remarks on the connection between the additive separation of the Hamilton-Jacobi equation and the multiplicative separation of the Schroedinger equation. 1 The completeness and Robertson conditions
,” J. Math. Phys.
43
, 5183
–5222
(2002
).3.
Benenti
, S.
, Chanu
, C.
, and Rastelli
, G.
, “Variable-separation theory for the null Hamilton-Jacobi equation
,” J. Math. Phys.
46
, 042901
(2005
).4.
Bôcher
, M.
, Über die Reihenentwickelungen der Potentialtheorie (mit einem Vorwort von Felix Klein)
(Teubner
, Leipzig
, 1894
).5.
Boyer
, C. P.
, Kalnins
, E. G.
, and Miller
, Jr., W.
, “Symmetry and separation of variables for the Helmholtz and Laplace equations
,” Nagoya Math. J.
60
, 35
–80
(1976
).6.
Boyer
, C. P.
, Kalnins
, E. G.
, and Miller
, Jr., W.
, “R-separable coordinates for three-dimensional complex Riemannian spaces
,” Trans. Am. Math. Soc.
242
, 355
–376
(1978
).7.
8.
Chanu
, C.
and Rastelli
, G.
, “Fixed-energy -separation for Schrödinger equation
,” Int. J. Geom. Methods Mod. Phys.
3
, 489
–508
(2006
).9.
Chanu
, C.
and Rastelli
, G.
, “Eigenvalues of Killing tensors and separable webs on Riemannian and pseudo-Riemannian manifolds
,” Symmetry, Integr. Geom.: Methods Appl.
3
, 1
–21
(2007
).10.
Degiovanni
, L.
and Rastelli
, G.
, “Complex variables for separation of the Hamilton-Jacobi equation on real pseudo-Riemannian manifolds
,” J. Math. Phys.
48
, 073519
(2007
).11.
Eastwood
, M.
, “Higher symmetries of the Laplacian
,” Ann. Math.
161
, 1645
–1665
(2005
).12.
Eisenhart
, L. P.
, “Separable systems of Stäckel
,” Ann. Math.
35
, 284
–305
(1934
).13.
Gurevich
, G. B.
, Foundations of the Theory of Algebraic Invariants
(Noordhoff
, Groningen
, 1964
).14.
Horwood
, J. T.
, McLenaghan
, R. G.
, and Smirnov
, R. G.
, “Invariant classification of orthogonally separable Hamiltonian systems in Euclidean space
,” Commun. Math. Phys.
259
, 679
–709
(2005
).15.
Miller
, Jr., W.
, Symmetry and Separation of Variables
(Addison-Wesley
, Reading, MA
, 1977
).16.
Kalnins
, E. G.
, Separation of Variables for Riemannian Spaces of Constant Curvature
, Pitman Monographs and Surveys in Pure and Applied Mathematics
Vol. 28
(Longman Scientific & Technical
, Essex
, 1986
).17.
Moon
, P.
and Spencer
, D. E.
, “Separability in a class of coordinate systems
,” J. Franklin Inst.
254
, 227
–242
(1952
).18.
Moon
, P.
and Spencer
, D. E.
, Field Theory Handbook
(Springer-Verlag
, Berlin
, 1961
).19.
Nijenhuis
, A.
, “-forming sets of eigenvectors
,” Neder. Akad. Wetensch. Proc.
51A
, 200
–212
(1951
).20.
Olver
, P. J.
, Classical Invariant Theory
, London Mathematical Society Study Texts
Vol. 44
(Cambridge University Press
, Cambridge
, 1999
).21.
Olver
, P. J.
, Applications of Lie Groups to Differential Equations
, Graduate Texts in Mathematics
Vol. 107
, 2nd ed. (Springer
, New York
, 1993
).22.
Rani
, R.
, Edgar
, S. B.
, and Barnes
, A.
, “Killing tensors and conformal Killing tensors from conformal Killing vectors
,” Class. Quantum Grav.
20
, 1923
–1942
(2003
).23.
Schouten
, J. A.
, “Über Differentalkomitanten zweier kontravarianter Grössen
,” Proc. Kon. Ned. Akad. Amsterdam
43
, 449
–452
(1940
).24.
Tonolo
, A.
, “Sulle varietà Riemanniane normali a tre dimensioni
,” Pont. Acad. Sci. Acta
13
, 29
–53
(1949
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.