In this paper we establish certain fundamental radiation integral relations, refereed also as radiation theorems or principles, which connect the fields and far-field patterns due to the spherical wave excitation of a layered chiral obstacle by a dipole in its interior. The investigation of problems involving such types of excitations is motivated by significant applications including, for example, radiation from thin wires embedded in layered chiral media as well as from chiral in chiral composites. Reciprocity and general radiation theorems are established, relating the total, primary, and secondary Beltrami fields with the respective far-field patterns. As a consequence of the general radiation theorem, we obtain the optical theorem expressing the extinction cross section by means of the secondary Beltrami field at the dipole’s location. For an obstacle excited by a plane and a spherical wave mixed radiation-scattering theorems are derived. The theorems recover as special cases the respective known results for chiral and achiral media.

1.
C. F.
Bohren
,
Chem. Phys. Lett.
29
,
458
(
1974
).
2.
A.
Lakhtakia
,
Beltrami Fields in Chiral Media
(
World Scientific
,
Singapore
,
1994
).
3.
A.
Lakhtakia
,
V. K.
Varadan
, and
V. V.
Varadan
,
Time-Harmonic Electromagnetic Fields in Chiral Media
,
Lecture Notes in Physics
, Vol.
335
(
SpringerVerlag
,
Berlin
,
1989
).
4.
I. V.
Lindell
,
A. H.
Sihvola
,
S. A.
Tretyakov
, and
A. J.
Viitanen
,
Electromagnetic Waves in Chiral and Bi-isotropic Media
(
Artech
,
Boston, Mass
,
1994
).
5.
D. L.
Jaggard
,
J. C.
Liu
,
A.
Grot
, and
P.
Pelet
,
IEEE Trans. Antennas Propag.
40
,
1273
(
1992
).
6.
B.
Shanker
and
A.
Lakhtakia
,
J. Phys. D
26
,
1746
(
1993
).
7.
P. C.
Chaumet
,
K.
Belkebir
, and
R.
Lencrerot
,
Opt. Express
14
,
3415
(
2006
).
8.
J.
Kim
and
Y.
Rahmat-Samii
,
IEEE Trans. Microwave Theory Tech.
52
,
1934
(
2004
).
9.
G.
Dassios
,
A. S.
Fokas
, and
F.
Kariotou
,
Inverse Probl.
21
,
L1
(
2005
).
10.
N. K.
Uzunoglu
and
J. G.
Fikioris
,
J. Opt. Soc. Am.
72
,
628
(
1982
).
11.
A.
Lakhtakia
,
Optik
99
,
35
(
1995
).
12.
C.
Athanasiadis
,
J. Math. Anal. Appl.
309
,
517
(
2005
).
13.
C.
Athanasiadis
and
N.
Berketis
,
Math. Methods Appl. Sci.
29
,
27
(
2006
).
14.
J. D.
Jackson
,
Classical Electrodynamics
(
Wiley
,
New York
,
1975
).
15.
D. S.
Jones
,
Acoustic and Electromagnetic Scattering
(
Clarendon
,
Oxford
,
1986
).
16.
C.
Athanasiadis
and
N. L.
Tsitsas
,
Math. Methods Appl. Sci.
30
,
1467
(
2007
).
17.
A.
Sommerfeld
,
Partial Differential Equations in Physics
(
Academic
,
New York
,
1949
).
18.
N. L.
Tsitsas
and
C.
Athanasiadis
,
Q. J. Mech. Appl. Math.
59
,
55
(
2006
).
19.
G.
Dassios
and
R.
Kleinman
,
Low Frequency Scattering
(
Clarendon
,
Oxford
,
2000
).
20.
R.
Potthast
,
Point-Sources and Multipoles in Inverse-Scattering Theory
(
Chapman and Hall/CRC
,
London/Boca Raton
,
2001
).
21.
J. A.
Stratton
,
Electromagnetic Theory
(
McGraw-Hill
,
New York
,
1941
).
22.
C.-T.
Tai
,
Dyadic Green Functions in Electromagnetic Theory
(
IEEE
,
New York
,
1994
).
23.
C.
Athanasiadis
,
G.
Costakis
, and
I. G.
Stratis
,
IMA J. Appl. Math.
64
,
245
(
2000
).
24.
D.
Colton
and
R.
Kress
,
Inverse Acoustic and Electromagnetic Scattering Theory
(
Springer-Verlag
,
Berlin
,
1992
).
25.
G.
Dassios
and
G.
Kamvyssas
,
IMA J. Appl. Math.
55
,
67
(
1995
).
You do not currently have access to this content.