We consider the variational problem associated to the L2 norm of the angular acceleration for variations with constant length. This is a classical problem related to recent models for the spinning relativistic particles (both, massive and massless) and to Bernoulli’s elastica problem. Its interest arises also in computer graphics and in trajectory planning problems for rigid body motion. Explicit integration of the Euler-Lagrange equations is considerably difficult, in general. We show how one can use a geometric integration procedure to achieve this goal for unit speed critical points in real space forms. From the Euler-Lagrange equations, we obtain the geometric integration: critical curves are a family of ordinary helices in a real space form of dimension 3 at most. Moreover, ordinary helices in real space forms can be characterized in turn as geodesics in certain constant mean curvature flat “cylinders.” This will allow us to obtain the analytical integration of the Euler-Lagrange equations. We also determine the closed unit speed critical curves for this energy.

1.
Arroyo
,
J.
, “
Presión calibrada total: Estudio variacional y aplicaciones al problema de Willmore-Chen
,” Ph.D. thesis,
University of the Basque country
, Febrero
2001
(in spanish).
2.
Arroyo
,
J.
,
Barros
,
M.
, and
Garay
,
O. J.
, “
Holography and total charge
,”
J. Geom. Phys.
41
,
65
72
(
2002
).
3.
Arroyo
,
J.
,
Barros
,
M.
, and
Garay
,
O. J.
, “
Relativistic particles with rigidity generating non-standard examples of Willmore-Chen submanifolds
,”
J. Phys. A
35
,
6815
6824
(
2002
).
4.
Arroyo
,
J.
,
Garay
,
O. J.
, and
Mencia
,
J.
, “
Extremals of curvature energy actions on spherical closed curves
,”
J. Geom. Phys.
51
,
101
125
(
2004
).
5.
Barros
,
M.
, “
General helices and a theorem of Lancret
,”
Proc. Am. Math. Soc.
125
,
1503
1509
(
1997
).
6.
Barros
,
M.
, “
Geometry and dinamics of relativistic particles with rigidity
,”
Gen. Relativ. Gravit.
34
,
837
852
(
2002
).
7.
Barros
,
M.
,
Ferrández
,
A.
,
Javaloyes
,
M. A.
, and
Lucas
,
P.
, “
Geometry of relativistic particles with torsion
,”
Int. J. Mod. Phys. A
19
,
1737
1745
(
2004
).
8.
Barros
,
M.
,
Cabrerizo
,
J. L.
,
Fernandez
,
M.
, and
Romero
,
A.
, “
The Gauss-Landau-Hall problem on Riemannian surfaces
,”
J. Math. Phys.
46
,
112905
(
2005
).
9.
Barros
,
M.
and
Garay
,
O. J.
, “
Hopf submanifolds in S7 which are Willmore-Chen submanifolds
,”
Math. Z.
228
,
121
129
(
1998
).
10.
Camarinha
,
M.
,
Silva Leite
,
F.
, and
Crouch
,
P.
, “
Two higher order variational problems on Riemannian manifolds and the interpolation problem
,”
Proceedings of the Third European Control Conference
,
Roma
,
1995
(unpublished), Vol.
IV
,
3269
3274
.
11.
Camarinha
,
M.
,
Silva Leite
,
F.
, and
Crouch
,
P.
, “
On the geometry of Riemannian cubic polynomials
,”
Diff. Geom. Applic.
15
,
107
135
(
2001
).
12.
Erbacher
,
J.
, “
Reduction of the codimension of an isometric immersion
,”
J. Diff. Geom.
5
,
333
340
(
1971
).
13.
Kapustnikov
,
A.
,
Pashev
,
A.
, and
Pichugin
,
A.
, “
Canonical quantization of the kink model beyond the static solution
,”
Phys. Rev. D
55
,
2257
2264
(
1997
).
14.
Langer
,
J.
and
Singer
,
D. A.
, “
The total squared curvature of closed curve s
,”
J. Diff. Geom.
20
,
1
22
(
1984
).
15.
Langer
,
J.
and
Singer
,
D. A.
, “
Knotted elastic curves in R3
,”
J. Lond. Math. Soc.
16
,
512
520
(
1984
).
16.
Nesterenko
,
V. V.
,
Feoli
,
A.
, and
Scarpetta
,
G.
, “
Dynamics of relativistic particle with Lagrangian dependent on acceletation
,”
J. Math. Phys.
36
,
5552
(
1995
).
17.
Noakes
,
L.
,
Heinzinger
,
G.
, and
Paden
,
B.
, “
Cubic splines on curved spaces
,”
IMA J. Math. Control Inf.
12
,
399
410
(
1995
).
18.
Noakes
,
L.
, “
Null cubics and Lie quadratics
,”
J. Math. Phys.
44
,
1436
1448
(
2003
).
19.
Noakes
,
L.
and
Popiel
,
T.
, “
Null Riemannian cubics in tension in SO(3)
,”
IMA J. Math. Control Inf.
22
,
477
488
(
2005
).
20.
Plyusschay
,
M. S.
, “
Massles particle with rigidity as a model for the desciption of bosons and fermions
,”
Phys. Lett. B
243
,
383
388
(
1990
).
21.
Plyusschay
,
M. S.
, “
Does the quantization of a particle with curvature lead to the Dirac equation?
,”
Phys. Lett. B
253
,
50
55
(
1991
).
22.
Pinkall
,
U.
, “
Hopf Tori in S3
,”
Invent. Math.
81
,
379
386
(
1985
).
23.
Schweikert
,
D. G.
, “
An interpolation curve using a spline in tension
,”
J. Math. Phys. (Cambridge, Mass.)
45
,
312
313
(
1966
).
You do not currently have access to this content.