We consider the variational problem associated to the norm of the angular acceleration for variations with constant length. This is a classical problem related to recent models for the spinning relativistic particles (both, massive and massless) and to Bernoulli’s elastica problem. Its interest arises also in computer graphics and in trajectory planning problems for rigid body motion. Explicit integration of the Euler-Lagrange equations is considerably difficult, in general. We show how one can use a geometric integration procedure to achieve this goal for unit speed critical points in real space forms. From the Euler-Lagrange equations, we obtain the geometric integration: critical curves are a family of ordinary helices in a real space form of dimension 3 at most. Moreover, ordinary helices in real space forms can be characterized in turn as geodesics in certain constant mean curvature flat “cylinders.” This will allow us to obtain the analytical integration of the Euler-Lagrange equations. We also determine the closed unit speed critical curves for this energy.
Skip Nav Destination
Article navigation
January 2008
Research Article|
January 23 2008
Unit speed stationary points of the acceleration Available to Purchase
J. Arroyo;
J. Arroyo
a)
Departamento de Matemáticas, Facultad de Ciencia y Tecnología,
Universidad del País Vasco/Euskal Herriko Unibertsitatea
, Aptdo 644, 48080 Bilbao, Spain
Search for other works by this author on:
O. J. Garay;
O. J. Garay
b)
Departamento de Matemáticas, Facultad de Ciencia y Tecnología,
Universidad del País Vasco/Euskal Herriko Unibertsitatea
, Aptdo 644, 48080 Bilbao, Spain
Search for other works by this author on:
J. J. Mencía
J. J. Mencía
c)
Departamento de Matemáticas, Facultad de Ciencia y Tecnología,
Universidad del País Vasco/Euskal Herriko Unibertsitatea
, Aptdo 644, 48080 Bilbao, Spain
Search for other works by this author on:
J. Arroyo
a)
Departamento de Matemáticas, Facultad de Ciencia y Tecnología,
Universidad del País Vasco/Euskal Herriko Unibertsitatea
, Aptdo 644, 48080 Bilbao, Spain
O. J. Garay
b)
Departamento de Matemáticas, Facultad de Ciencia y Tecnología,
Universidad del País Vasco/Euskal Herriko Unibertsitatea
, Aptdo 644, 48080 Bilbao, Spain
J. J. Mencía
c)
Departamento de Matemáticas, Facultad de Ciencia y Tecnología,
Universidad del País Vasco/Euskal Herriko Unibertsitatea
, Aptdo 644, 48080 Bilbao, Spain
a)
Electronic mail: [email protected].
b)
Electronic mail: [email protected].
c)
Electronic mail: [email protected].
J. Math. Phys. 49, 013508 (2008)
Article history
Received:
September 06 2007
Accepted:
December 07 2007
Citation
J. Arroyo, O. J. Garay, J. J. Mencía; Unit speed stationary points of the acceleration. J. Math. Phys. 1 January 2008; 49 (1): 013508. https://doi.org/10.1063/1.2830433
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity
Ramón G. Plaza, Delyan Zhelyazov
Connecting stochastic optimal control and reinforcement learning
J. Quer, Enric Ribera Borrell
Related Content
Extendability of Kirchhoff elastic rods in complete Riemannian manifolds
J. Math. Phys. (August 2014)
Invariant boundary value problems for a fourth-order dynamic Euler-Bernoulli beam equation
J. Math. Phys. (April 2012)
Growth of heat trace coefficients for locally symmetric spaces
J. Math. Phys. (September 2012)
Bending, longitudinal and torsional wave transmission on Euler-Bernoulli and Timoshenko beams with high propagation losses
J. Acoust. Soc. Am. (October 2016)
Numerical solutions for Helmholtz equations using Bernoulli polynomials
AIP Conf. Proc. (July 2017)