In quantum estimation theory and quantum tomography, the quantum state obtained by sampling converges to the “true” unknown density matrix under topologies that are different from the natural notion of distance in the space of quantum states, i.e., the trace class norm. In this paper, we address such problem, finding relations between the rates of convergence in the Schatten -norms and in the trace class norm.
REFERENCES
1.
K.
Vogel
and H.
Risken
, Phys. Rev. A
40
, 2847
(1989
).2.
U.
Leonhardt
Phys. Rev. Lett.
74
, 4101
(1995
).3.
G. M.
D’Ariano
, M. G. A.
Paris
, and M. F.
Sacchi
, Adv. Imaging Electron Phys.
128
, 205
(2003
).4.
O. E.
Bardoff-Nielsen
, R. D.
Gill
, and P. E.
Jupp
, J. R. Stat. Soc. Ser. B (Stat. Methodol.)
65
, 775
(2003
).5.
L. M.
Artiles
, R. D.
Gill
, and M. I.
Guta
, J. R. Stat. Soc. Ser. B (Stat. Methodol.)
67
, 109
(2005
).6.
7.
8.
B.
Simon
, Trace Ideals and Their Applications
, London Mathematical Society Lecture Note series 35
(Cambridge University Press
, London
, 1979
).9.
M.
Reed
and B.
Simon
, Methods of Modern Mathematical Physics
(Academic
, London
, 1980
), Vol. 1
.© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.