This paper presents a powerful method to integrate general monomials on the classical groups with respect to their invariant (Haar) measure. The method has first been applied to the orthogonal group by one of the authors, Gorin [J. Math. Phys., 43, 3342 (2002)], and is here used to obtain similar integration formulas for the unitary and the unitary symplectic group. The integration formulas are all recursive, where the recursion parameter is the number of column (row) vectors from which the elements in the monomial are taken. This is an important difference to other integration methods. The integration formulas are easily implemented in a computer algebra environment, which allows us to compute a given monomial integral very efficiently. The result is always a rational function of the matrix dimension.

1.
H.
Weyl
,
The Classical Groups
(
Princeton University Press
,
Princeton
,
1939
).
2.
A.
Haar
,
Ann. Math.
34
,
147
(
1933
).
3.
Harish-Chandra
,
Am. J. Math.
79
,
87
(
1957
).
4.
C.
Itzykson
and
J.-B.
Zuber
,
J. Math. Phys.
21
,
411
(
1980
).
5.
A. B.
Balantekin
,
J. Math. Phys.
25
,
2028
(
1984
).
6.
A. B.
Balantekin
and
P.
Cassak
,
J. Math. Phys.
43
,
604
(
2002
).
7.
N.
Ullah
and
C. E.
Porter
,
Phys. Rev.
132
,
948
(
1963
).
9.
Statistical Theories of Spectra: Fluctuations
, edited by
C. E.
Porter
(
Academic
,
New York
,
1967
).
10.
T. A.
Brody
,
J.
Flores
,
J. B.
French
,
P. A.
Mello
,
A.
Pandey
, and
S. S. M.
Wong
,
Rev. Mod. Phys.
53
,
385
(
1981
).
11.
P. A.
Mello
and
T. H.
Seligman
,
Nucl. Phys. A
344
,
489
(
1980
).
12.
S.
Samuel
,
J. Math. Phys.
21
,
2695
(
1980
).
14.
P. W.
Brouwer
and
C. W. J.
Beenakker
,
J. Math. Phys.
37
,
4904
(
1996
).
15.
P. A.
Mello
and
N.
Kumar
,
Quantum Transport in Mesoscopic Systems: Complexity and Statistical Fluctuations: A Maximum-Entropy Viewpoint
(
Oxford University Press
,
Oxford
,
2004
).
16.
F.
Haake
,
Quantum Signatures of Chaos
(
Springer
,
Berlin
,
1991
).
17.
M. L.
Mehta
,
Random Matrices and the Statistical Theory of Energy Levels
(
Academic
,
New York
,
1991
).
18.
T.
Gorin
and
T. H.
Seligman
,
J. Opt. B: Quantum Semiclassical Opt.
4
,
S386
(
2002
).
19.
T.
Gorin
and
T. H.
Seligman
,
Phys. Lett. A
309
,
61
(
2003
).
20.
R. F.
Abreu
and
R. O.
Vallejos
,
Phys. Rev. A
75
,
062335
(
2007
).
21.
T.
Prosen
,
T. H.
Seligman
, and
H. A.
Weidenmüller
,
J. Math. Phys.
43
,
5135
(
2002
).
22.
S.
Aubert
and
C. S.
Lam
,
J. Math. Phys.
44
,
6112
(
2003
).
23.
S.
Aubert
and
C. S.
Lam
,
J. Math. Phys.
45
,
3019
(
2004
).
25.
B.
Collins
and
P.
Śniady
,
Commun. Math. Phys.
264
,
773
(
2006
).
26.
T.
Gorin
,
J. Math. Phys.
43
,
3342
(
2002
).
You do not currently have access to this content.