The modified Kadomtsev-Petviashvili (mKP) equation is shown in this paper to be decomposable into the first two soliton equations of the 2N-coupled Chen-Lee-Liu and Kaup-Newell hierarchies by, respectively, nonlinearizing two sets of symmetry Lax pairs. In these two cases, the decomposed (1+1)-dimensional nonlinear systems both have a couple of different Lax representations, which means that there are two linear systems associated with the mKP equation under the same constraint between the potential and eigenfunctions. For each Lax representation of the decomposed (1+1)-dimensional nonlinear systems, the corresponding Darboux transformation is further constructed such that a series of explicit solutions of the mKP equation can be recursively generated with the assistance of symbolic computation. In illustration, four new families of solitary-wave solutions are presented and the relevant stability is analyzed.

1.
P. D.
Lax
,
Commun. Pure Appl. Math.
21
,
467
(
1968
).
2.
M. J.
Ablowitz
and
P. A.
Clarkson
,
Solitons, Nonlinear Evolution Equations and Inverse Scattering
(
Cambridge University Press
,
Cambridge
,
1992
).
3.
M. J.
Ablowitz
,
D. J.
Kaup
,
A. C.
Newell
, and
H.
Segur
,
Phys. Rev. Lett.
31
,
125
(
1973
).
4.
M.
Wadati
,
K.
Konno
, and
Y.
Ichikawa
,
J. Phys. Soc. Jpn.
46
,
1965
(
1979
).
5.
D. J.
Kaup
and
A. C.
Newell
,
J. Math. Phys.
19
,
798
(
1978
).
6.
D.
Levi
,
A.
Sym
, and
S.
Wojciechowski
,
J. Phys. A
16
,
2423
(
1983
).
7.
V. V.
Gribanov
,
V. G.
Kadyshevsky
, and
A. S.
Sorin
,
Theor. Math. Phys.
146
,
73
(
2006
);
K.
Konno
,
R.
Asai
, and
H.
Kakuhata
,
J. Phys. Soc. Jpn.
74
,
1881
(
2005
);
P. R.
Gordoa
,
J. Math. Phys.
41
,
4713
(
2000
).
8.
R. A.
Kraenkel
and
A.
Zenchuk
,
Phys. Lett. A
260
,
218
(
1999
);
G. X.
Huang
,
L.
Deng
, and
C.
Hang
,
Phys. Rev. E
72
,
036621
(
2005
);
B.
Tian
and
Y. T.
Gao
,
Phys. Plasmas
12
,
070703
(
2005
);
B.
Tian
and
Y. T.
Gao
,
Phys. Lett. A
340
,
243
(
2005
);
Y. T.
Gao
and
B.
Tian
,
Phys. Lett. A
349
,
314
(
2006
);
J.
Li
,
H. Q.
Zhang
,
T.
Xu
,
Y. X.
Zhang
,
W.
Hu
, and
B.
Tian
,
J. Phys. A
40
,
7643
(
2007
).
9.
10.
A. S.
Fokas
and
P. M.
Santini
,
Phys. Rev. Lett.
63
,
1329
(
1989
);
[PubMed]
H. Y.
Ruan
and
Y. X.
Chen
,
Phys. Rev. E
62
,
5738
(
2000
);
X. Y.
Tang
,
S. Y.
Lou
, and
Y.
Zhang
,
Phys. Rev. E
66
,
046601
(
2002
).
11.
T.
Xu
,
C. Y.
Zhang
,
J.
Li
,
H. Q.
Zhang
,
L. L.
Li
, and
B.
Tian
,
Z. Naturforsch., A: Phys. Sci.
61
,
652
(
2006
).
12.
B.
Konopelchenko
,
J.
Sidorenko
, and
W.
Strampp
,
Phys. Lett. A
157
,
17
(
1991
).
13.
Y.
Cheng
and
Y. S.
Li
,
Phys. Lett. A
157
,
22
(
1991
);
14.
C. W.
Cao
,
Y. T.
Wu
, and
X. G.
Geng
,
Phys. Lett. A
256
,
59
(
1999
).
15.
Y.
Cheng
and
Y. S.
Li
,
J. Phys. A
25
,
419
(
1992
).
16.
B.
Konopelchenko
and
V.
Dubrovsky
,
Phys. Lett. A
102
,
45
(
1984
).
17.
I. S.
O’Keir
and
E. J.
Parkes
,
Phys. Scr.
55
,
135
(
1997
).
18.
V.
Veerakumar
and
M.
Daniel
,
Math. Comput. Simul.
62
,
163
(
2003
).
19.
X. G.
Geng
and
X. M.
Li
,
J. Phys. A
34
,
9653
(
2001
);
J. B.
Chen
and
X. G.
Geng
,
Eur. Phys. J. B
50
,
445
(
2006
).
20.
X. G.
Geng
,
Y. T.
Wu
, and
C. W.
Cao
,
J. Phys. A
32
,
3733
(
1999
).
22.
J. H.
Lee
and
O. K.
Pashaev
,
Theor. Math. Phys.
144
,
995
(
2005
).
23.
H. H.
Dai
and
X. G.
Geng
,
J. Math. Phys.
41
,
7501
(
2000
);
H. H.
Dai
and
X. G.
Geng
,
Chaos, Solitons Fractals
14
,
489
(
2002
).
24.
H. H.
Chen
,
Y. C.
Lee
, and
C. S.
Liu
,
Phys. Scr.
20
,
490
(
1979
).
25.
C. H.
Gu
,
H. S.
Hu
, and
Z. X.
Zhou
,
Darboux Transformation in Soliton Theory and its Geometric Applications
(
Shanghai Scientific and Technical
,
Shanghai
,
2005
).
26.
V. B.
Matveev
and
M. A.
Salle
,
Darboux Transformations and Solitons
(
Springer
,
Berlin
,
1991
).
27.
E. G.
Fan
,
Computer Algebra and Integrable Systems
(
Science
,
Beijing
,
2004
).
28.
M. P.
Barnett
,
J. F.
Capitani
,
J.
Von Zur Gathen
, and
J.
Gerhard
,
Int. J. Quantum Chem.
100
,
80
(
2004
);
B.
Tian
and
Y. T.
Gao
,
Eur. Phys. J. D
33
,
59
(
2005
);
Y. T.
Gao
and
B.
Tian
,
Phys. Plasmas
12
,
054701
(
2005
);
B.
Tian
and
Y. T.
Gao
,
Phys. Lett. A
340
,
449
(
2005
);
B.
Tian
and
Y. T.
Gao
,
Phys. Lett. A
342
,
228
(
2005
);
B.
Tian
and
Y. T.
Gao
,
Phys. Lett. A
359
,
241
(
2006
);
B.
Tian
and
Y. T.
Gao
,
Phys. Lett. A
362
,
283
(
2007
);
Y. T.
Gao
and
B.
Tian
,
Phys. Plasmas
13
,
112901
(
2006
).
29.
Y. T.
Gao
and
B.
Tian
,
Phys. Lett. A
361
,
523
(
2007
);
Y. T.
Gao
and
B.
Tian
,
Phys. Plasmas
13
,
120703
(
2006
);
Y. T.
Gao
and
B.
Tian
,
Europhys. Lett.
77
,
15001
(
2007
);
B.
Tian
,
Y. T.
Gao
, and
H. W.
Zhu
,
Phys. Lett. A
366
,
223
(
2007
).
30.
B.
Tian
,
W. R.
Shan
,
C. Y.
Zhang
,
G. M.
Wei
, and
Y. T.
Gao
,
Eur. Phys. J. B
47
,
329
(
2005
);
B.
Tian
,
G. M.
Wei
,
C. Y.
Zhang
,
W. R.
Shan
, and
Y. T.
Gao
,
Phys. Lett. A
356
,
8
(
2006
);
Y. T.
Gao
,
B.
Tian
, and
C. Y.
Zhang
,
Acta Mech.
182
,
17
(
2006
);
31.
T.
Tsuchida
and
M.
Wadati
,
Phys. Lett. A
257
,
53
(
1999
).
32.
E. G.
Fan
,
J. Math. Phys.
42
,
4327
(
2001
).
33.
C. W.
Cao
,
Sci. China, Ser. A
33
,
528
(
1990
);
W. X.
Ma
and
W.
Strampp
,
Phys. Lett. A
185
,
277
(
1994
).
You do not currently have access to this content.