In this paper, we classify all indecomposable Harish-Chandra modules of the intermediate series over the twisted Heisenberg-Virasoro algebra. Meanwhile, some bosonic modules are also studied.

1.
Arbarello
,
E.
,
DeConcini
,
C.
,
Kac
,
V. G.
, and
Procesi
,
C.
, “
Moduli spaces of curves and representation theory
,”
Commun. Math. Phys.
117
,
1
36
(
1988
).
2.
Billig
,
Y.
, “
Representations of the twisted Heisenberg-Virasoro algebra at level zero
,”
Can. Math. Bull.
46
,
529
533
(
2003
).
3.
Chen
,
L.
, “
Differential operator Lie algebras on the ring of Laurent polynomials
,”
Commun. Math. Phys.
167
,
431
469
(
1995
).
4.
Fabbri
,
M. A.
and
Moody
,
R. V.
, “
Irreducible representations of Virasoro-toroidal Lie algebras
,”
Commun. Math. Phys.
159
,
1
13
(
1994
).
5.
Fabbri
,
M. A.
and
Okoh
,
F.
, “
Representations of Heisenberg-Virasoro algebras and Virasoro-toroidal algebras
,”
Can. J. Math.
51
,
523
545
(
1999
).
6.
Feingold
,
A. J.
and
Frenkel
,
I. B.
, “
Classical affine Lie algebras
,”
Adv. Math.
56
,
117
172
(
1985
).
7.
Frenkel
,
I. B.
, “
Spinor representations of affine Lie algebras
,”
Proc. Natl. Acad. Sci. U.S.A.
77
,
6303
6306
(
1980
).
8.
Fu
,
J. Y.
,
Jiang
,
Q. F.
, and
Su
,
Y. C.
, e-print arXiv:math.QA∕0608508.
9.
Hu
,
N.
and
Liu
,
D.
, “
Decompositions of bosonic modules of Lie algebras W1+ and W1+(glN)
,”
Chin. Ann. Math., Ser. B
26
,
1
10
(
2005
).
10.
Jiang
,
Q. F.
and
Jiang
,
C. B.
, “
Representations of the twisted Heisenberg-Virasoro algebra and the full toroidal Lie algebras
,”
Algebra Colloq.
14
,
117
134
(
2007
).
11.
Kac
,
V. G.
and
Peterson
,
D. H.
, “
Spin and wedge representations of infinite-dimensional Lie algebras and groups
,”
Proc. Natl. Acad. Sci. U.S.A.
78
,
3308
3312
(
1981
).
12.
Kac
,
V. G.
and
Radul
,
A.
, “
Quasifinite highest weight modules over the Lie algebra of differential operators on the circle
,”
Commun. Math. Phys.
157
,
429
457
(
1993
).
13.
Kac
,
V. G.
and
van de Leur
,
J. W.
,
Strings ’88
,
College Park, MD
,
1988
(unpublished), pp.
77
106
.
14.
Kaplansky
,
I.
and
Santharoubane
,
L. J.
,
Harish-Chandra Modules Over the Virasoro Algebra
,
Mathematical Sciences Research Institute Publication No. 4
(
Springer
,
New York
,
1985
), pp.
217
231
.
15.
Kong
,
X. L.
,
Cheng
,
H. J.
, and
Bai
,
C. M.
, e-print arXiv:mathQA∕0706.4229.
16.
Lu
,
R.
and
Zhao
,
K.
, e-print arXiv:math-ST∕0510194.
17.
Osborn
,
J. M.
and
Zhao
,
K.
, “
Doubly Z-graded Lie algebras containing a Virasoro algebra
,”
J. Algebra
219
,
266
298
(
1999
).
18.
Wang
,
W. Q.
, “
W1+ algebra, W3 algebra, and Friedan-Martinec-Shenker bosonization
,”
Commun. Math. Phys.
195
,
95
111
(
1998
).
You do not currently have access to this content.