In this paper, we classify all indecomposable Harish-Chandra modules of the intermediate series over the twisted Heisenberg-Virasoro algebra. Meanwhile, some bosonic modules are also studied.
REFERENCES
1.
Arbarello
, E.
, DeConcini
, C.
, Kac
, V. G.
, and Procesi
, C.
, “Moduli spaces of curves and representation theory
,” Commun. Math. Phys.
117
, 1
–36
(1988
).2.
Billig
, Y.
, “Representations of the twisted Heisenberg-Virasoro algebra at level zero
,” Can. Math. Bull.
46
, 529
–533
(2003
).3.
Chen
, L.
, “Differential operator Lie algebras on the ring of Laurent polynomials
,” Commun. Math. Phys.
167
, 431
–469
(1995
).4.
Fabbri
, M. A.
and Moody
, R. V.
, “Irreducible representations of Virasoro-toroidal Lie algebras
,” Commun. Math. Phys.
159
, 1
–13
(1994
).5.
Fabbri
, M. A.
and Okoh
, F.
, “Representations of Heisenberg-Virasoro algebras and Virasoro-toroidal algebras
,” Can. J. Math.
51
, 523
–545
(1999
).6.
Feingold
, A. J.
and Frenkel
, I. B.
, “Classical affine Lie algebras
,” Adv. Math.
56
, 117
–172
(1985
).7.
Frenkel
, I. B.
, “Spinor representations of affine Lie algebras
,” Proc. Natl. Acad. Sci. U.S.A.
77
, 6303
–6306
(1980
).8.
9.
Hu
, N.
and Liu
, D.
, “Decompositions of bosonic modules of Lie algebras and
,” Chin. Ann. Math., Ser. B
26
, 1
–10
(2005
).10.
Jiang
, Q. F.
and Jiang
, C. B.
, “Representations of the twisted Heisenberg-Virasoro algebra and the full toroidal Lie algebras
,” Algebra Colloq.
14
, 117
–134
(2007
).11.
Kac
, V. G.
and Peterson
, D. H.
, “Spin and wedge representations of infinite-dimensional Lie algebras and groups
,” Proc. Natl. Acad. Sci. U.S.A.
78
, 3308
–3312
(1981
).12.
Kac
, V. G.
and Radul
, A.
, “Quasifinite highest weight modules over the Lie algebra of differential operators on the circle
,” Commun. Math. Phys.
157
, 429
–457
(1993
).13.
Kac
, V. G.
and van de Leur
, J. W.
, Strings ’88
, College Park, MD
, 1988
(unpublished), pp. 77
–106
.14.
Kaplansky
, I.
and Santharoubane
, L. J.
, Harish-Chandra Modules Over the Virasoro Algebra
, Mathematical Sciences Research Institute Publication No. 4
(Springer
, New York
, 1985
), pp. 217
–231
.15.
Kong
, X. L.
, Cheng
, H. J.
, and Bai
, C. M.
, e-print arXiv:mathQA∕0706.4229.16.
Lu
, R.
and Zhao
, K.
, e-print arXiv:math-ST∕0510194.17.
Osborn
, J. M.
and Zhao
, K.
, “Doubly -graded Lie algebras containing a Virasoro algebra
,” J. Algebra
219
, 266
–298
(1999
).18.
Wang
, W. Q.
, “ algebra, algebra, and Friedan-Martinec-Shenker bosonization
,” Commun. Math. Phys.
195
, 95
–111
(1998
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.