We consider the zero mass limit of a relativistic Thomas-Fermi-Weizsäcker model of atoms and molecules. We find bounds for the critical nuclear charges that ensure stability.

1.
Benguria
,
R. D.
and
Pérez-Oyarzún
,
S.
, “
The ultrarelativistic Thomas-Fermi-von Weizsäcker model
,”
J. Phys. A
35
,
3409
3414
(
2002
).
2.
Engel
,
E.
and
Dreizler
,
R. M.
, “
Field-theoretical Approach to a Relativistic Thomas-Fermi-Weizsäcker Model
,”
Phys. Rev. A
35
,
3607
3618
(
1987
).
3.
Engel
,
E.
and
Dreizler
,
R. M.
, “
Solution of the relativistic Thomas-Fermi-Dirac-Weizsäcker Model for the Case of Neutral Atoms and Positive Ions
,”
Phys. Rev. A
38
,
3909
3917
(
1988
).
4.
Frank
,
R. L.
,
Siedentop
,
H.
, and
Warzel
,
S.
, “
The Ground State Energy of Heavy Atoms: Relativistic Lowering of the Leading Energy Correction
,”
Commun. Math. Phys.
(in press).
5.
Hodges
,
C. H.
, “
Quantum Corrections to the Thomas-Fermi Approximation—The Kirzhnits Method
,”
Can. J. Phys.
51
,
1428
1437
(
1973
).
6.
Kirznits
,
D. A.
,
Field Theoretical Methods in Many Body Systems
(
Pergamon
,
New York
,
1967
).
7.
Lieb
,
E. H.
, “
Analysis of the Thomas-Fermi-von Weizsäcker Equation for an Infinite Atom without Electron Repulsion
,”
Commun. Math. Phys.
85
,
15
25
(
1982
).
8.
Lieb
,
E. H.
, “
Thomas-Fermi and Related Theories of Atoms and Molecules
,”
Rev. Mod. Phys.
53
,
603
641
(
1981
).
9.
Lieb
,
E. H.
and
Daubechies
,
I.
, “
One electron relativistic molecules with Coulomb interaction
,”
Commun. Math. Phys.
90
,
497
510
(
1983
).
10.
Lieb
,
E. H.
,
Loss
,
M.
, and
Siedentop
,
H.
, “
Stability of Relativistic Matter via Thomas-Fermi Theory
,”
Helv. Phys. Acta
69
,
974
984
(
1996
).
11.
Lieb
,
E. H.
and
Yau
,
H.
, “
Many-Body Stability Implies a Bound on the Fine-Structure Constant
,”
Phys. Rev. Lett.
61
,
1695
1697
(
1988
).
12.
Lieb
,
E. H.
and
Yau
,
H.
, “
The Stability and Instability of Relativistic Matter
,”
Commun. Math. Phys.
118
,
177
213
(
1988
).
13.
Tomishima
,
Y.
and
Yonei
,
K.
, “
Solution of the Thomas-Fermi-Dirac Equation with a Modified Weizsäcker Correction
,”
J. Phys. Soc. Jpn.
21
,
142
153
(
1966
).
14.
von Weizsäcker
,
C. F.
, “
Zur Theorie de Kernmassen
,”
Z. Phys.
96
,
431
458
(
1935
).
15.
Voronoi
,
G.
, “
Nouvelles applications des paramètres continus à la théorie des formes quadratiques
,”
J. Reine Angew. Math.
133
,
97
178
(
1907
).
You do not currently have access to this content.