The first-order formulation of the principal sigma model with a Lie group target space is performed. By using the dualization of the algebra and the field content of the theory the field equations which are solely written in terms of the field strengths are realized through an extended symmetry algebra parametrization. The structure of this symmetry algebra is derived so that it generates the realization of the field equations in a Bianchi identity of the current derived from the extended parametrization.

1.
E.
Cremmer
,
B.
Julia
,
H.
, and
C. N.
Pope
,
Nucl. Phys. B
535
,
242
(
1998
);
2.
N. T.
Yılmaz
,
Nucl. Phys. B
664
,
357
(
2003
);
3.
4.
H.
Eichenherr
and
M.
Forger
,
Nucl. Phys. B
155
,
381
(
1979
).
5.
H.
Eichenherr
and
M.
Forger
,
Nucl. Phys. B
164
,
528
(
1980
).
6.
H.
Eichenherr
and
M.
Forger
,
Commun. Math. Phys.
82
,
227
(
1981
).
7.
T.
Dereli
and
N. T.
Yılmaz
,
Nucl. Phys. B
705
,
60
, (
2005
);
8.
S. R.
Coleman
,
J.
Wess
, and
B.
Zumino
,
Phys. Rev.
177
,
2239
(
1969
).
9.
C. G.
Callan
,
S. R.
Coleman
,
J.
Wess
, and
B.
Zumino
,
Phys. Rev.
177
,
2247
(
1969
).
10.
M. K.
Gaillard
and
B.
Zumino
,
Nucl. Phys. B
193
,
221
(
1981
).
11.
E.
Witten
,
Commun. Math. Phys.
92
,
455
(
1984
).
12.
J. M.
Evans
,
M.
Hassan
,
N. J.
MacKay
, and
A. J.
Mountain
,
Nucl. Phys. B
561
,
385
, (
1999
);
13.
N. T.
Yılmaz
,
Mod. Phys. Lett. A
22
,
1829
(
2007
).
You do not currently have access to this content.