In this paper, we present a construction for the compact form of the exceptional Lie group by exponentiating the corresponding Lie algebra , which we realize as the sum of , the derivations of the exceptional Jordan algebra of dimension 3 with octonionic entries, and the right multiplication by the elements of with vanishing trace. Our parametrization is a generalization of the Euler angles for SU(2) and it is based on the fibration of via an subgroup as the fiber. It makes use of a similar construction we have performed in a previous article for . An interesting first application of these results lies in the fact that we are able to determine an explicit expression for the Haar invariant measure on the group manifold.
REFERENCES
1.
Bernardoni
, F.
, Cacciatori
, S. L.
, Cerchiai
, B. L.
, and Scotti
, A.
, “Mapping the geometry of the F(4) group
,” e-print arXiv:math-ph∕0705.3978.2.
Cacciatori
, S. L.
, Cerchiai
, B. L.
, Della Vedova
, A.
, Ortenzi
, G.
, and Scotti
, A.
, “Euler angles for G(2)
,” J. Math. Phys.
46
, 083512
(2005
),e-print arXiv:hep-th∕0503106;
Cacciatori
, S. L.
, “A simple parametrization for G2
,” J. Math. Phys.
46
, 083520
(2005
),e-print arXiv:math-ph∕0503054;
Bertini
, S.
, Cacciatori
, S. L.
, and Cerchiai
, B. L.
, “On the Euler angles for SU(N)
,” J. Math. Phys.
47
, 043510
(2006
),e-print arXiv:math-ph∕0510075.
3.
Caravaglios
, F.
, and Morisi
, S.
, “Gauge bosons families in grand unified theories of Fermion masses:
,” Int. J. Mod. Phys. A
A22
, 2469
–2492
(2007
).4.
Chevalley
, C.
, Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950
(American Mathematical Society
, Providence, RI
, 1952
), Vol. 2
, pp. 21
–24
.5.
Chevalley
, C.
, and Schafer
, R. D.
, “The exceptional simple Lie algebras and
,” Proc. Natl. Acad. Sci. U.S.A.
36
, 137
–141
(1950
).6.
Das
, C. R.
, and Laperashvili
, L. V.
, “Preon model and family replicated E(6) unification
,” e-print arXiv:hep-ph∕0707.4551.7.
Freudenthal
, H.
, “Lie groups in the foundations of geometry
,” Adv. Math.
1
, 145
–90
(1964
).8.
Fulton
, W.
, and Harris
, J.
, Representation Theory
, Springer Graduate Texts in Mathematics
(Springer
, New York
, 1991
).9.
Hashimoto
, Y.
, “On Macdonald’s formula for the volume of a compact Lie group
,” Comment. Math. Helv.
72
, 660
–662
(1997
).10.
Hopf
, H.
, “Uber Die Topologie der Gruppen-Manningfaltigkeiten und Ihre Verallgemeinerungen
,” Ann. Math.
42
, 22
–52
(1941
).11.
Macdonald
, I. G.
, “The volume of a compact Lie group
,” Invent. Math.
56
, 93
–95
(1980
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.