In this paper, we present a construction for the compact form of the exceptional Lie group E6 by exponentiating the corresponding Lie algebra e6, which we realize as the sum of f4, the derivations of the exceptional Jordan algebra J3 of dimension 3 with octonionic entries, and the right multiplication by the elements of J3 with vanishing trace. Our parametrization is a generalization of the Euler angles for SU(2) and it is based on the fibration of E6 via an F4 subgroup as the fiber. It makes use of a similar construction we have performed in a previous article for F4. An interesting first application of these results lies in the fact that we are able to determine an explicit expression for the Haar invariant measure on the E6 group manifold.

1.
Bernardoni
,
F.
,
Cacciatori
,
S. L.
,
Cerchiai
,
B. L.
, and
Scotti
,
A.
, “
Mapping the geometry of the F(4) group
,” e-print arXiv:math-ph∕0705.3978.
2.
Cacciatori
,
S. L.
,
Cerchiai
,
B. L.
,
Della Vedova
,
A.
,
Ortenzi
,
G.
, and
Scotti
,
A.
, “
Euler angles for G(2)
,”
J. Math. Phys.
46
,
083512
(
2005
),
Cacciatori
,
S. L.
, “
A simple parametrization for G2
,”
J. Math. Phys.
46
,
083520
(
2005
),
Bertini
,
S.
,
Cacciatori
,
S. L.
, and
Cerchiai
,
B. L.
, “
On the Euler angles for SU(N)
,”
J. Math. Phys.
47
,
043510
(
2006
),
3.
Caravaglios
,
F.
, and
Morisi
,
S.
, “
Gauge bosons families in grand unified theories of Fermion masses: E64×S4
,”
Int. J. Mod. Phys. A
A22
,
2469
2492
(
2007
).
4.
Chevalley
,
C.
,
Proceedings of the International Congress of Mathematicians, Cambridge, MA, 1950
(
American Mathematical Society
,
Providence, RI
,
1952
), Vol.
2
, pp.
21
24
.
5.
Chevalley
,
C.
, and
Schafer
,
R. D.
, “
The exceptional simple Lie algebras F4 and E6
,”
Proc. Natl. Acad. Sci. U.S.A.
36
,
137
141
(
1950
).
6.
Das
,
C. R.
, and
Laperashvili
,
L. V.
, “
Preon model and family replicated E(6) unification
,” e-print arXiv:hep-ph∕0707.4551.
7.
Freudenthal
,
H.
, “
Lie groups in the foundations of geometry
,”
Adv. Math.
1
,
145
90
(
1964
).
8.
Fulton
,
W.
, and
Harris
,
J.
,
Representation Theory
,
Springer Graduate Texts in Mathematics
(
Springer
,
New York
,
1991
).
9.
Hashimoto
,
Y.
, “
On Macdonald’s formula for the volume of a compact Lie group
,”
Comment. Math. Helv.
72
,
660
662
(
1997
).
10.
Hopf
,
H.
, “
Uber Die Topologie der Gruppen-Manningfaltigkeiten und Ihre Verallgemeinerungen
,”
Ann. Math.
42
,
22
52
(
1941
).
11.
Macdonald
,
I. G.
, “
The volume of a compact Lie group
,”
Invent. Math.
56
,
93
95
(
1980
).
You do not currently have access to this content.