In this paper we prove a lower bound for the determinant of the covariance matrix of quantum mechanical observables, which was conjectured by Gibilisco et al. and has the interpretation of uncertainty. The lower bound is given in terms of the commutator of the state and the observables and quantum Fisher information (generated by an operator monotone function).
REFERENCES
1.
E.
Beckenbach
and R.
Bellman
, Inequalities
(Springer
, Berlin
, 1961
).2.
W. J.
Firey
, “Some applications of means of convex bodies
,” Pac. J. Math.
14
, 53
–60
(1964
).3.
P.
Gibilisco
, D.
Imparato
, and T.
Isola
, “Uncertainty principle and quantum Fisher information II
,” J. Math. Phys.
48
, 072109
(2007
).4.
P.
Gibilisco
, D.
Imparato
, and T.
Isola
, “A volume inequality for quantum Fisher information and the uncertainty principle
,” J. Stat. Phys.
130
, 545
–559
(2007
).5.
P.
Gibilisco
, D.
Imparato
, and T.
Isola
, “A Robertson-type uncertainty principle and quantum Fisher information
,” e-print arXiv:math-ph/0707.1231v1 (2007
).6.
P.
Gibilisco
and T.
Isola
, “Uncertainty principle and quantum Fisher information
,” Ann. Inst. Stat. Math.
59
, 147
–159
(2006
).7.
8.
W.
Heisenberg
, “Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik
,” Z. Phys.
43
, 172
–198
(1927
).9.
F.
Hiai
, D.
Petz
, and G.
Toth
, “Curvature in the geometry of canonical correlation
,” Stud. Sci. Math. Hung.
32
, 235
–249
(1996
).10.
R. A.
Horn
and C. R.
Johnson
, Matrix Analysis
(Cambridge University Press
, Cambridge
, 1985
).11.
H.
Kosaki
, “Matrix trace inequality related to uncertainty principle
,” Int. J. Math.
16
, 629
–645
(2005
).12.
S.
Luo
, “Quantum Fisher information and uncertainty relations
,” Lett. Math. Phys.
53
, 243
–251
(2000
).13.
S.
Luo
, “Wigner-Yanase skew information and uncertainty relations
,” Phys. Rev. Lett.
91
, 180403
(2003
).14.
S.
Luo
and Q.
Zhang
, “On skew information
,” IEEE Trans. Inf. Theory
50
, 1778
–1782
(2004
).15.
S.
Luo
and Q.
Zhang
, “Correction to: On skew information
,” IEEE Trans. Inf. Theory
51
, 4432
(2005
).16.
S.
Luo
and Z.
Zhang
, “An informational characterization of Schrödinger’s uncertainty relations
,” J. Stat. Phys.
114
, 1557
–1576
(2004
).17.
D.
Petz
, “Geometry of canonical correlation on the state space of a quantum system
,” J. Math. Phys.
35
, 780
–795
(1994
).18.
D.
Petz
, “Monotone metrics on matrix spaces
,” Numer. Linear Algebra Appl.
244
, 81
–96
(1996
).19.
D.
Petz
, “Covariance and Fisher information in quantum mechanics
,” J. Phys. A
35
, 79
–91
(2003
).20.
D.
Petz
and Cs.
Sudár
, “On the curvature of a certain Riemannian space of matrices
,” J. Math. Phys.
37
, 2662
–2673
(1996
).21.
E.
Schrödinger
, “About Heisenberg uncertainty relation
,” Bulg. J. Phys.
26
, 193
–203
(2000
);Translation of “Zum Heisenbergschen Unschärfeprinzip, Sitzungberichten der Preussischen Akademie der Wissenschaften,”
Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl.
19
, 296
–303
(1930
).22.
K.
Yanagi
, S.
Furuichi
, and K.
Kuriyama
, “A generalized skew information and uncertainty relation
,” IEEE Trans. Inf. Theory
51
, 4401
–4404
(2005
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.