In this paper we prove a lower bound for the determinant of the covariance matrix of quantum mechanical observables, which was conjectured by Gibilisco et al. and has the interpretation of uncertainty. The lower bound is given in terms of the commutator of the state and the observables and quantum Fisher information (generated by an operator monotone function).

1.
E.
Beckenbach
and
R.
Bellman
,
Inequalities
(
Springer
,
Berlin
,
1961
).
2.
W. J.
Firey
, “
Some applications of means of convex bodies
,”
Pac. J. Math.
14
,
53
60
(
1964
).
3.
P.
Gibilisco
,
D.
Imparato
, and
T.
Isola
, “
Uncertainty principle and quantum Fisher information II
,”
J. Math. Phys.
48
,
072109
(
2007
).
4.
P.
Gibilisco
,
D.
Imparato
, and
T.
Isola
, “
A volume inequality for quantum Fisher information and the uncertainty principle
,”
J. Stat. Phys.
130
,
545
559
(
2007
).
5.
P.
Gibilisco
,
D.
Imparato
, and
T.
Isola
, “
A Robertson-type uncertainty principle and quantum Fisher information
,” e-print arXiv:math-ph/0707.1231v1 (
2007
).
6.
P.
Gibilisco
and
T.
Isola
, “
Uncertainty principle and quantum Fisher information
,”
Ann. Inst. Stat. Math.
59
,
147
159
(
2006
).
7.
F.
Hansen
, “
Metric adjusted skew information
,” e-print arXiv:math-ph/0607049v5 (
2007
).
8.
W.
Heisenberg
, “
Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik
,”
Z. Phys.
43
,
172
198
(
1927
).
9.
F.
Hiai
,
D.
Petz
, and
G.
Toth
, “
Curvature in the geometry of canonical correlation
,”
Stud. Sci. Math. Hung.
32
,
235
249
(
1996
).
10.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
(
Cambridge University Press
,
Cambridge
,
1985
).
11.
H.
Kosaki
, “
Matrix trace inequality related to uncertainty principle
,”
Int. J. Math.
16
,
629
645
(
2005
).
12.
S.
Luo
, “
Quantum Fisher information and uncertainty relations
,”
Lett. Math. Phys.
53
,
243
251
(
2000
).
13.
S.
Luo
, “
Wigner-Yanase skew information and uncertainty relations
,”
Phys. Rev. Lett.
91
,
180403
(
2003
).
14.
S.
Luo
and
Q.
Zhang
, “
On skew information
,”
IEEE Trans. Inf. Theory
50
,
1778
1782
(
2004
).
15.
S.
Luo
and
Q.
Zhang
, “
Correction to: On skew information
,”
IEEE Trans. Inf. Theory
51
,
4432
(
2005
).
16.
S.
Luo
and
Z.
Zhang
, “
An informational characterization of Schrödinger’s uncertainty relations
,”
J. Stat. Phys.
114
,
1557
1576
(
2004
).
17.
D.
Petz
, “
Geometry of canonical correlation on the state space of a quantum system
,”
J. Math. Phys.
35
,
780
795
(
1994
).
18.
D.
Petz
, “
Monotone metrics on matrix spaces
,”
Numer. Linear Algebra Appl.
244
,
81
96
(
1996
).
19.
D.
Petz
, “
Covariance and Fisher information in quantum mechanics
,”
J. Phys. A
35
,
79
91
(
2003
).
20.
D.
Petz
and
Cs.
Sudár
, “
On the curvature of a certain Riemannian space of matrices
,”
J. Math. Phys.
37
,
2662
2673
(
1996
).
21.
E.
Schrödinger
, “
About Heisenberg uncertainty relation
,”
Bulg. J. Phys.
26
,
193
203
(
2000
);
Translation of “Zum Heisenbergschen Unschärfeprinzip, Sitzungberichten der Preussischen Akademie der Wissenschaften,”
Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl.
19
,
296
303
(
1930
).
22.
K.
Yanagi
,
S.
Furuichi
, and
K.
Kuriyama
, “
A generalized skew information and uncertainty relation
,”
IEEE Trans. Inf. Theory
51
,
4401
4404
(
2005
).
You do not currently have access to this content.