We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.

1.
M. B.
Plenio
and
S.
Virmani
,
Quantum Inf. Comput.
7
,
1
(
2007
).
2.
K.
Zyczkowski
and
I.
Bengstsson
, e-print arXiv:quant-ph∕0606228.
4.
K.
Chen
and
L.-A.
Wu
,
Quantum Inf. Comput.
3
,
193
(
2003
),
O.
Rudolph
,
Phys. Rev. A
67
,
032312
(
2003
),
O.
Rudolph
, e-print arXiv:quant-ph∕0202121.
5.
M.
Horodecki
,
P.
Horodecki
, and
R.
Horodecki
,
Phys. Lett. A
223
,
1
(
1996
).
6.
7.
J. I.
de Vicente
,
Quantum Inf. Comput.
7
,
624
(
2007
).
8.
A. S. M.
Hassan
and
P. S.
Joag
, e-print arXiv:quant-ph∕0704.3942.
9.
O.
Guhne
,
P.
Hyllus
,
O.
Gittsovich
, and
J.
Eisert
, e-print arXiv:quant-ph∕0611282.
11.
S.
Braunstein
,
S.
Ghosh
,
S.
Severini
,
Ann. Comb.
10
,
3
(
2006
),
12.
A. S. M.
Hassan
and
P. S.
Joag
,
J. Phys. A
40
,
10251
(
2007
).
13.
S. L.
Braunstein
,
S.
Ghosh
,
T.
Mansour
,
S.
Severini
, and
R. C.
Wilson
,
Phys. Rev. A
73
,
012320
(
2006
).
14.
W.
Imrich
and
S.
Klavzar
,
Product Graphs, Structure and Recognition
,
Wiley-Interscience Series in Discrete Mathematics and Optimization
(
Wiley-Interscience
,
New York
,
2000
).
15.
B.
Mohar
,
The Laplacian Spectrum of Graphs
,
Graph Theory Combinotorics and Applications
Vol.
II
(
Wiley
,
New York
,
1991
).
16.
R.
Horodecki
,
P.
Horodecki
,
M.
Horodecki
, and
K.
Horodecki
, arXiv:quant-ph∕0702225.
17.
R.
Hildebrand
,
S.
Mancini
, and
S.
Severini
, e-print arXiv:cs.CC∕0607036.
You do not currently have access to this content.