We derive closed formulas for mean values of all powers of r in nonrelativistic and relativistic Coulomb problems in terms of the Hahn and Chebyshev polynomials of a discrete variable. A short review on special functions and solution of the Coulomb problems in quantum mechanics is given.

1.
Akhiezer
,
A.
and
Berestetskii
,
V. B.
,
Quantum Electrodynamics
(
Interscience
,
New York
,
1965
).
2.
Andrews
,
G. E.
and
Askey
,
R. A.
,
Polynômes Orthogonaux et Applications
,
Lecture Notes in Mathematics
, Vol.
1171
(
Springer-Verlag
,
Berlin
,
1985
), pp.
36
62
.
3.
Andrews
,
G. E.
,
Askey
,
R. A.
, and
Roy
,
R.
,
Special Functions
(
Cambridge University Press
,
Cambridge
,
1999
).
4.
Askey
,
R. A.
,
Orthogonal Polynomials and Special Functions
,
CBMS-NSF Regional Conferences Series in Applied Mathematics
(
SIAM
,
Philadelphia, PA
,
1975
).
5.
Askey
,
R. A.
, “
Continuous Hahn polynomials
,”
J. Phys. A
18
,
L1017
L1019
(
1985
).
6.
Askey
,
R. A.
and
Wilson
,
J. A.
, “
A set of hypergeometric orthogonal polynomials
,”
J. Math. Anal. Appl.
13
,
651
655
(
1982
).
7.
Askey
,
R. A.
and
Wilson
,
J. A.
, “
Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials
,”
Mem. Am. Math. Soc.
319
(
1985
).
8.
Atakishiyev
,
N. M.
and
Suslov
,
S. K.
, in
Progress in Approximation Theory: An International Perspective
,
Springer Series in Computational Mathematics
Vol.
19
, edited by
A. A.
Gonchar
and
E. B.
Saff
(
Springer-Verlag
,
Berlin
,
1992
), pp.
1
35
.
9.
Atakishyev
,
N. M.
and
Suslov
,
S. K.
, “
The Hahn and Meixner polynomials of imaginary argument and some of their applications
,”
J. Phys. A
18
,
1583
1596
(
1985
).
10.
Bailey
,
W. N.
,
Generalized Hypergeometric Series
(
Cambridge University Press
,
Cambridge
,
1935
).
11.
Bargmann
,
V.
, “
Zur Theorie des Wasserstoffatom
,”
Z. Phys.
99
,
576
582
(
1936
).
12.
Bateman
,
H.
, “
An orthogonality property of the hypergeometric polynomial
,”
Proc. Natl. Acad. Sci. U.S.A.
28
,
374
377
(
1942
).
13.
Bateman
,
H.
, “
Functions orthogonal in Hermitian sense. A new application of basic numbers
,”
Proc. Natl. Acad. Sci. U.S.A.
20
,
63
66
(
1934
).
14.
Bateman
,
H.
, “
Some properties of a certain set of polynomials
,”
Tohoku Math. J.
37
,
23
38
(
1933
).
15.
Bateman
,
H.
, “
The polynomial Fn(x)
,”
Ann. Math.
35
,
767
775
(
1934
).
16.
Berestetskii
,
V. B.
,
Lifshitz
,
E. M.
, and
Pitaevskii
,
L. P.
,
Relativistic Quantum Theory
(
Pergamon
,
Oxford
,
1971
).
17.
Bethe
,
H. A.
and
Salpeter
,
E. E.
,
Quantum Mechanics of One- and Two-Electron Atoms
(
Springer-Verlag
,
Berlin
,
1957
).
18.
Biederharn
,
L. C.
, “
The `Sommerfeld puzzle' revisted and resolved
,”
Found. Phys.
13
,
13
33
(
1983
).
19.
Bjorken
,
J. D.
and
Drell
,
S. D.
,
Relativistic Quantum Mechanics
(
McGraw-Hill
,
New York
,
1964
);
Relativistic Quantum Fields
(
McGraw-Hill
,
New York
,
1965
).
20.
Bogoliubov
,
N. N.
and
Shirkov
,
D. V.
,
Introduction to the Theory of Quantized Fields
, 3rd ed. (
Wiley
,
New York
,
1980
).
21.
Boole
,
G.
,
A Treatise on Differential Equations
, 5th ed. (
Chelsea
,
New York
,
1959
).
22.
Boole
,
G.
,
A Treatise on the Calculus of Finite Differences
, 2nd ed. (
Macmillan
,
London
Dover
,
New York
,
1872∕1960
).
23.
Brafman
,
F.
, “
On Touchard polynomials
,”
Can. J. Math.
9
,
191
193
(
1957
).
24.
Bromwich
,
T. J.
,
An Introduction to the Theory of Infinite Series
, 2nd ed. (
Macmillan
,
New York
,
1959
).
25.
Carlitz
,
L.
, “
Bernoulli and Euler numbers and orthogonal polynomials
,”
Duke Math. J.
26
,
1
15
(
1959
).
26.
Carlitz
,
L.
, “
Some polynomials of Touchard connected with the Bernoulli numbers
,”
Can. J. Math.
9
,
188
190
(
1957
).
27.
Condon
,
E. U.
and
Shortley
,
G. H.
,
The Theory of Atomic Spectra
(
Cambridge University Press
,
London
,
1953
).
28.
Davis
,
L.
, “
A note on the wave functions of the relativistic hydrogen atom
,”
Phys. Rev.
56
,
186
187
(
1939
).
29.
Davydov
,
A. S.
,
Quantum Mechanics
(
Pergamon
,
Oxford
,
1965
).
30.
Darwin
,
C. G.
, “
The wave equations of the electron
,”
Proc. R. Soc. London, Ser. A
118
,
654
680
(
1928
).
31.
Dirac
,
P. A. M.
,
The Principles of Quantum Mechanics
, 3rd ed. (
Clarendon
,
Oxford
,
1947
).
32.
Dirac
,
P. A. M.
, “
The quantum theory of the electron
,”
Proc. R. Soc. London, Ser. A
117
,
610
624
(
1928
).
33.
Dirac
,
P. A. M.
, “
The quantum theory of the electron. Part II
,”
Proc. R. Soc. London, Ser. A
118
,
351
361
(
1928
).
34.
Dulock
,
V. A.
and
McIntosh
,
H. V.
, “
On the degeneracy of the Kepler problem
,”
Pac. J. Math.
19
,
39
55
(
1966
).
35.
Edmonds
,
A. R.
,
Angular Momentum in Quantum Mechanics
(
Princeton University
,
Princeton, NJ
,
1953
).
36.
Erdélyi
,
A.
,
Higher Transcendental Functions
(
McGraw-Hill
,
New York
,
1953
), Vols.
I–III
.
37.
Ey
,
K.
,
Ruffing
,
A. L.
, and
Suslov
,
S. K.
, “
Method of separation of the variables for basic analogs of equations of mathematical physics
,”
The Ramanujan Journal
13,
407
447
(
2007
).
38.
Fermi
,
E.
,
Notes on Quantum Mechanics
,
Phoenix Science Series
(
The University of Chicago Press
,
Chicago
,
1961
).
39.
Fermi
,
E.
, “
Quantum theory of radiation
,”
Rev. Mod. Phys.
4
,
87
132
(
1932
).
40.
Flügge
,
S.
,
Practical Quantum Mechanics
(
Springer-Verlag
,
Berlin
,
1999
).
41.
Fock
,
V.
, “
Zur Theorie des Wasserstoffatoms
,”
Z. Phys.
98
,
135
154
(
1935
).
42.
Gasper
,
G.
and
Rahman
,
M.
,
Basic Hypergeometric Series
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
2004
).
43.
Gordon
,
W.
, “
Die Energieniveaus des Wasserstoffatoms nach der Diracshen Quantentheorie des Elektrons
,”
Z. Phys.
13
,
11
14
(
1928
).
44.
Hardy
,
G. H.
, “
Notes on special systems of orthogonal functions (III): a system of orthogonal polynomials
,”
Proc. Cambridge Philos. Soc.
36
,
1
8
(
1940
);
Collected Papers
(
Oxford University Press
,
London
,
1967
), Vol.
4
, pp.
552
559
.
45.
Hartree
,
D. R.
,
The Calculation of Atomic Structure
(
Wiley
,
New York
,
1967
).
46.
Hawkings
,
S.
and
Penrose
,
R.
,
The Nature of Space and Time
(
Princeton University Press
,
Princeton, NJ
,
2000
).
47.
Itzykson
,
C.
and
Zuber
,
J-B.
,
Quantum Field Theory
(
Dover
,
New York
,
2005
).
48.
Koekoek
,
R.
and
Swarttouw
,
R. F.
, “
The Askey scheme of hypergeometric orthogonal polynomials and its q-analogues
,”
Delft University of Technology
Report No. 94–05
1994
(unpublished).
49.
Koelink
,
H. T.
, “
On Jacobi and continuous Hahn polynomials
,”
Proc. Am. Math. Soc.
124
,
887
898
(
1996
).
50.
Koornwinder
,
T. H.
, “
Clebsch-Gordan coefficients for SU(2) and Hahn polynomials
,”
Nieuw Arch. Wiskd.
29
,
140
155
(
1981
).
51.
Landau
,
L. D.
and
Lifshitz
,
E. M.
,
Quantum Mechanics: Nonrelativistic Theory
(
Pergamon
,
Oxford
,
1977
).
52.
Lopez
,
R. M.
and
Suslov
,
S. K.
, e-print arXiv:math-ph/0707.1902v8.
53.
Meiler
,
M.
,
Cordero-Soto
,
R.
, and
Suslov
,
S. K.
, e-print arXiv:math-ph/0711.0559v4.
54.
Messia
,
A.
,
Quantum Mechanics
(
Dover
,
New York
,
1999
), Vol.
II
.
55.
Nikiforov
,
A. F.
,
Suslov
,
S. K.
, and
Uvarov
,
V. B.
,
Classical Orthogonal Polynomials of a Discrete Variable
(
Springer-Verlag
,
Berlin
,
1991
).
56.
Nikiforov
,
A. F.
,
Suslov
,
S. K.
and
Uvarov
,
V. B.
, “
Classical orthogonal polynomials in a discrete variable on nonuniform lattices
,”
Sov. Math. Dokl.
34
,
576
579
(
1987
).
57.
Nikiforov
,
A. F.
and
Uvarov
,
V. B.
,
Special Functions of Mathematical Physics
(
Birkhäuser
,
Basel
,
1988
).
58.
Pasternack
,
S.
, “
A generalization of the polynomials Fn(x)
,”
London, Edinburgh Dublin Philos. Mag. J. Sci.
28
,
209
226
(
1939
).
59.
Pasternack
,
S.
, “
On the mean value of rs for Keplerian systems
,”
Proc. Natl. Acad. Sci. U.S.A.
23
,
91
94
(
1937
).
60.
Penrose
,
R.
,
The Road to Reality: A Complete Guide to the Laws of the Universe
(
Borzoi Book-Knopf
,
New York
,
2005
).
61.
Rahman
,
M.
, “
A non-negative representation of the linearization coefficients of the product of Jacobi polynomials
,”
Can. J. Math.
33
,
915
928
(
1981
).
62.
Rahman
,
M.
, “
The linearization of the product of continuous q-Jacobi polynomials
,”
Can. J. Math.
33
,
961
987
(
1981
).
63.
Rose
,
M. E.
,
Elementary Theory of Angular Momentum
(
Wiley
,
New York
,
1957
).
64.
Schiff
,
L. I.
,
Quantum Mechanics
, 3rd ed. (
McGraw-Hill
,
New York
,
1968
).
65.
Smorodinskii
,
Ya. A.
and
Suslov
,
S. K.
, “
The Clebsch-Gordan coefficients of the group SU(2) and Hahn polynomials
,”
Sov. J. Nucl. Phys.
35
,
108
113
(
1982
).
66.
Smorodinskii
,
Ya. A.
and
Suslov
,
S. K.
, “
6j-symbols and orthogonal polynomials
,”
Sov. J. Nucl. Phys.
36
,
623
625
(
1982
).
67.
Suslov
,
S. K.
,
An Introduction to Basic Fourier Series
,
Kluwer Series “Developments in Mathematics”
Vol.
9
(
Kluwer
,
Dordrecht
,
2003
).
68.
Suslov
,
S. K.
, “
Matrix elements of Lorentz boosts and the orthogonality of Hahn polynomials on a contour
,”
Sov. J. Nucl. Phys.
36
,
621
622
(
1982
).
69.
Suslov
,
S. K.
, “
Rodrigues formula for the Racah coefficients
,”
Sov. J. Nucl. Phys.
37
,
472
473
(
1983
).
70.
Suslov
,
S. K.
, “
The Hahn polynomials in the Coulomb problem
,”
Sov. J. Nucl. Phys.
40
,
79
82
(
1984
).
71.
Suslov
,
S. K.
, “
The theory of difference analogues of special functions of hypergeometric type
,”
Russ. Math. Surveys
44
,
227
278
(
1989
).
72.
Suslov
,
S. K.
, “
The 9j-symbols as orthogonal polynomials in two discrete variables
,”
Sov. J. Nucl. Phys.
38
,
662
663
(
1983
).
73.
Suslov
,
S. K.
(unpublished).
74.
Szegő
,
G.
,
Orthogonal Polynomials
,
American Mathematical Society Colloqium
(
The American Mathematical Society
,
RI
,
1939
), Vol.
23
.
75.
Tchebychef
,
P. L.
,
Qeuvres
(
Chelsea
,
New York
,
1962
), Vol.
1
, pp.
473
498
.
76.
Tchebychef
,
P. L.
,
Qeuvres
(
Chelsea
,
New York
,
1962
), Vol.
1
, pp.
542
560
.
77.
Tchebychef
,
P. L.
,
Qeuvres
(
Chelsea
,
New York
,
1962
), Vol.
2
, pp.
219
242
.
78.
Ticciati
,
R.
,
Quantum Field Theory for Mathematicians
(
Cambridge University Press
,
Cambridge
,
1999
).
79.
Touchard
,
J.
, “
Nombres exponentiels et nombres de Bernoulli
,”
Can. J. Math.
8
,
305
320
(
1956
).
80.
Varshalovich
,
D. A.
,
Moskalev
,
A. N.
, and
Khersonskii
,
V. K.
,
The Quantum Theory of Angular Momentum
(
World Scientific
,
Singapore
,
1986
).
81.
Vilenkin
,
N. Ya.
,
Special Functions and the Theory of Group Representations
(
American Mathematical Society
,
Providence
,
1968
).
82.
Weinberg
,
S.
,
The Quantum Theory of Fields
(
Cambridge University Press
,
Cambridge
,
1998
), Vols.
1–3
.
83.
Wigner
,
E. P.
,
Group Theory and its Application to the Quantum Mechanics of Atomic Spectra
(
Academic
,
New York
,
1959
).
84.
Wigner
,
E. P.
,
The Application of Group Theory to the Special Functions of Mathematical Physics
(
Princeton University Press
,
Princeton, NJ
,
1955
).
85.
Wilson
,
J. A.
, “
Some hypergeometric orthogonal polynomials
,”
SIAM J. Math. Anal.
11
,
690
701
(
1980
).
86.
Wyman
,
M.
and
Moser
,
L.
, “
On some polynomials of Touchard
,”
Can. J. Math.
8
,
321
322
(
1956
).
You do not currently have access to this content.