We derive closed formulas for mean values of all powers of in nonrelativistic and relativistic Coulomb problems in terms of the Hahn and Chebyshev polynomials of a discrete variable. A short review on special functions and solution of the Coulomb problems in quantum mechanics is given.
REFERENCES
1.
Akhiezer
, A.
and Berestetskii
, V. B.
, Quantum Electrodynamics
(Interscience
, New York
, 1965
).2.
Andrews
, G. E.
and Askey
, R. A.
, Polynômes Orthogonaux et Applications
, Lecture Notes in Mathematics
, Vol. 1171
(Springer-Verlag
, Berlin
, 1985
), pp. 36
–62
.3.
Andrews
, G. E.
, Askey
, R. A.
, and Roy
, R.
, Special Functions
(Cambridge University Press
, Cambridge
, 1999
).4.
Askey
, R. A.
, Orthogonal Polynomials and Special Functions
, CBMS-NSF Regional Conferences Series in Applied Mathematics
(SIAM
, Philadelphia, PA
, 1975
).5.
Askey
, R. A.
, “Continuous Hahn polynomials
,” J. Phys. A
18
, L1017
–L1019
(1985
).6.
Askey
, R. A.
and Wilson
, J. A.
, “A set of hypergeometric orthogonal polynomials
,” J. Math. Anal. Appl.
13
, 651
–655
(1982
).7.
Askey
, R. A.
and Wilson
, J. A.
, “Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials
,” Mem. Am. Math. Soc.
319
(1985
).8.
Atakishiyev
, N. M.
and Suslov
, S. K.
, in Progress in Approximation Theory: An International Perspective
, Springer Series in Computational Mathematics
Vol. 19
, edited by A. A.
Gonchar
and E. B.
Saff
(Springer-Verlag
, Berlin
, 1992
), pp. 1
–35
.9.
Atakishyev
, N. M.
and Suslov
, S. K.
, “The Hahn and Meixner polynomials of imaginary argument and some of their applications
,” J. Phys. A
18
, 1583
–1596
(1985
).10.
Bailey
, W. N.
, Generalized Hypergeometric Series
(Cambridge University Press
, Cambridge
, 1935
).11.
Bargmann
, V.
, “Zur Theorie des Wasserstoffatom
,” Z. Phys.
99
, 576
–582
(1936
).12.
Bateman
, H.
, “An orthogonality property of the hypergeometric polynomial
,” Proc. Natl. Acad. Sci. U.S.A.
28
, 374
–377
(1942
).13.
Bateman
, H.
, “Functions orthogonal in Hermitian sense. A new application of basic numbers
,” Proc. Natl. Acad. Sci. U.S.A.
20
, 63
–66
(1934
).14.
Bateman
, H.
, “Some properties of a certain set of polynomials
,” Tohoku Math. J.
37
, 23
–38
(1933
).15.
Bateman
, H.
, “The polynomial
,” Ann. Math.
35
, 767
–775
(1934
).16.
Berestetskii
, V. B.
, Lifshitz
, E. M.
, and Pitaevskii
, L. P.
, Relativistic Quantum Theory
(Pergamon
, Oxford
, 1971
).17.
Bethe
, H. A.
and Salpeter
, E. E.
, Quantum Mechanics of One- and Two-Electron Atoms
(Springer-Verlag
, Berlin
, 1957
).18.
Biederharn
, L. C.
, “The `Sommerfeld puzzle' revisted and resolved
,” Found. Phys.
13
, 13
–33
(1983
).19.
Bjorken
, J. D.
and Drell
, S. D.
, Relativistic Quantum Mechanics
(McGraw-Hill
, New York
, 1964
);Relativistic Quantum Fields
(McGraw-Hill
, New York
, 1965
).20.
Bogoliubov
, N. N.
and Shirkov
, D. V.
, Introduction to the Theory of Quantized Fields
, 3rd ed. (Wiley
, New York
, 1980
).21.
22.
Boole
, G.
, A Treatise on the Calculus of Finite Differences
, 2nd ed. (Macmillan
, London
∕Dover
, New York
, 1872∕1960
).23.
Brafman
, F.
, “On Touchard polynomials
,” Can. J. Math.
9
, 191
–193
(1957
).24.
Bromwich
, T. J.
, An Introduction to the Theory of Infinite Series
, 2nd ed. (Macmillan
, New York
, 1959
).25.
Carlitz
, L.
, “Bernoulli and Euler numbers and orthogonal polynomials
,” Duke Math. J.
26
, 1
–15
(1959
).26.
Carlitz
, L.
, “Some polynomials of Touchard connected with the Bernoulli numbers
,” Can. J. Math.
9
, 188
–190
(1957
).27.
Condon
, E. U.
and Shortley
, G. H.
, The Theory of Atomic Spectra
(Cambridge University Press
, London
, 1953
).28.
Davis
, L.
, “A note on the wave functions of the relativistic hydrogen atom
,” Phys. Rev.
56
, 186
–187
(1939
).29.
30.
Darwin
, C. G.
, “The wave equations of the electron
,” Proc. R. Soc. London, Ser. A
118
, 654
–680
(1928
).31.
Dirac
, P. A. M.
, The Principles of Quantum Mechanics
, 3rd ed. (Clarendon
, Oxford
, 1947
).32.
Dirac
, P. A. M.
, “The quantum theory of the electron
,” Proc. R. Soc. London, Ser. A
117
, 610
–624
(1928
).33.
Dirac
, P. A. M.
, “The quantum theory of the electron. Part II
,” Proc. R. Soc. London, Ser. A
118
, 351
–361
(1928
).34.
Dulock
, V. A.
and McIntosh
, H. V.
, “On the degeneracy of the Kepler problem
,” Pac. J. Math.
19
, 39
–55
(1966
).35.
Edmonds
, A. R.
, Angular Momentum in Quantum Mechanics
(Princeton University
, Princeton, NJ
, 1953
).36.
Erdélyi
, A.
, Higher Transcendental Functions
(McGraw-Hill
, New York
, 1953
), Vols. I–III
.37.
Ey
, K.
, Ruffing
, A. L.
, and Suslov
, S. K.
, “Method of separation of the variables for basic analogs of equations of mathematical physics
,” The Ramanujan Journal
13, 407
–447
(2007
).38.
Fermi
, E.
, Notes on Quantum Mechanics
, Phoenix Science Series
(The University of Chicago Press
, Chicago
, 1961
).39.
Fermi
, E.
, “Quantum theory of radiation
,” Rev. Mod. Phys.
4
, 87
–132
(1932
).40.
41.
Fock
, V.
, “Zur Theorie des Wasserstoffatoms
,” Z. Phys.
98
, 135
–154
(1935
).42.
Gasper
, G.
and Rahman
, M.
, Basic Hypergeometric Series
, 2nd ed. (Cambridge University Press
, Cambridge
, 2004
).43.
Gordon
, W.
, “Die Energieniveaus des Wasserstoffatoms nach der Diracshen Quantentheorie des Elektrons
,” Z. Phys.
13
, 11
–14
(1928
).44.
Hardy
, G. H.
, “Notes on special systems of orthogonal functions (III): a system of orthogonal polynomials
,” Proc. Cambridge Philos. Soc.
36
, 1
–8
(1940
);Collected Papers
(Oxford University Press
, London
, 1967
), Vol. 4
, pp. 552
–559
.45.
46.
Hawkings
, S.
and Penrose
, R.
, The Nature of Space and Time
(Princeton University Press
, Princeton, NJ
, 2000
).47.
48.
Koekoek
, R.
and Swarttouw
, R. F.
, “The Askey scheme of hypergeometric orthogonal polynomials and its q-analogues
,” Delft University of Technology
Report No. 94–05 1994
(unpublished).49.
Koelink
, H. T.
, “On Jacobi and continuous Hahn polynomials
,” Proc. Am. Math. Soc.
124
, 887
–898
(1996
).50.
Koornwinder
, T. H.
, “Clebsch-Gordan coefficients for SU(2) and Hahn polynomials
,” Nieuw Arch. Wiskd.
29
, 140
–155
(1981
).51.
Landau
, L. D.
and Lifshitz
, E. M.
, Quantum Mechanics: Nonrelativistic Theory
(Pergamon
, Oxford
, 1977
).52.
53.
54.
55.
Nikiforov
, A. F.
, Suslov
, S. K.
, and Uvarov
, V. B.
, Classical Orthogonal Polynomials of a Discrete Variable
(Springer-Verlag
, Berlin
, 1991
).56.
Nikiforov
, A. F.
, Suslov
, S. K.
and Uvarov
, V. B.
, “Classical orthogonal polynomials in a discrete variable on nonuniform lattices
,” Sov. Math. Dokl.
34
, 576
–579
(1987
).57.
Nikiforov
, A. F.
and Uvarov
, V. B.
, Special Functions of Mathematical Physics
(Birkhäuser
, Basel
, 1988
).58.
Pasternack
, S.
, “A generalization of the polynomials
,” London, Edinburgh Dublin Philos. Mag. J. Sci.
28
, 209
–226
(1939
).59.
Pasternack
, S.
, “On the mean value of for Keplerian systems
,” Proc. Natl. Acad. Sci. U.S.A.
23
, 91
–94
(1937
).60.
Penrose
, R.
, The Road to Reality: A Complete Guide to the Laws of the Universe
(Borzoi Book-Knopf
, New York
, 2005
).61.
Rahman
, M.
, “A non-negative representation of the linearization coefficients of the product of Jacobi polynomials
,” Can. J. Math.
33
, 915
–928
(1981
).62.
Rahman
, M.
, “The linearization of the product of continuous -Jacobi polynomials
,” Can. J. Math.
33
, 961
–987
(1981
).63.
Rose
, M. E.
, Elementary Theory of Angular Momentum
(Wiley
, New York
, 1957
).64.
65.
Smorodinskii
, Ya. A.
and Suslov
, S. K.
, “The Clebsch-Gordan coefficients of the group SU(2) and Hahn polynomials
,” Sov. J. Nucl. Phys.
35
, 108
–113
(1982
).66.
Smorodinskii
, Ya. A.
and Suslov
, S. K.
, “6j-symbols and orthogonal polynomials
,” Sov. J. Nucl. Phys.
36
, 623
–625
(1982
).67.
Suslov
, S. K.
, An Introduction to Basic Fourier Series
, Kluwer Series “Developments in Mathematics”
Vol. 9
(Kluwer
, Dordrecht
, 2003
).68.
Suslov
, S. K.
, “Matrix elements of Lorentz boosts and the orthogonality of Hahn polynomials on a contour
,” Sov. J. Nucl. Phys.
36
, 621
–622
(1982
).69.
Suslov
, S. K.
, “Rodrigues formula for the Racah coefficients
,” Sov. J. Nucl. Phys.
37
, 472
–473
(1983
).70.
Suslov
, S. K.
, “The Hahn polynomials in the Coulomb problem
,” Sov. J. Nucl. Phys.
40
, 79
–82
(1984
).71.
Suslov
, S. K.
, “The theory of difference analogues of special functions of hypergeometric type
,” Russ. Math. Surveys
44
, 227
–278
(1989
).72.
Suslov
, S. K.
, “The 9j-symbols as orthogonal polynomials in two discrete variables
,” Sov. J. Nucl. Phys.
38
, 662
–663
(1983
).73.
Suslov
, S. K.
(unpublished).74.
Szegő
, G.
, Orthogonal Polynomials
, American Mathematical Society Colloqium
(The American Mathematical Society
, RI
, 1939
), Vol. 23
.75.
76.
77.
78.
Ticciati
, R.
, Quantum Field Theory for Mathematicians
(Cambridge University Press
, Cambridge
, 1999
).79.
Touchard
, J.
, “Nombres exponentiels et nombres de Bernoulli
,” Can. J. Math.
8
, 305
–320
(1956
).80.
Varshalovich
, D. A.
, Moskalev
, A. N.
, and Khersonskii
, V. K.
, The Quantum Theory of Angular Momentum
(World Scientific
, Singapore
, 1986
).81.
Vilenkin
, N. Ya.
, Special Functions and the Theory of Group Representations
(American Mathematical Society
, Providence
, 1968
).82.
Weinberg
, S.
, The Quantum Theory of Fields
(Cambridge University Press
, Cambridge
, 1998
), Vols. 1–3
.83.
Wigner
, E. P.
, Group Theory and its Application to the Quantum Mechanics of Atomic Spectra
(Academic
, New York
, 1959
).84.
Wigner
, E. P.
, The Application of Group Theory to the Special Functions of Mathematical Physics
(Princeton University Press
, Princeton, NJ
, 1955
).85.
Wilson
, J. A.
, “Some hypergeometric orthogonal polynomials
,” SIAM J. Math. Anal.
11
, 690
–701
(1980
).86.
Wyman
, M.
and Moser
, L.
, “On some polynomials of Touchard
,” Can. J. Math.
8
, 321
–322
(1956
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.