A gate is called an entangler if it transforms some (pure) product states to entangled states. A universal entangler is a gate which transforms all product states to entangled states. In practice, a universal entangler is a very powerful device for generating entanglements, and thus provides important physical resources for accomplishing many tasks in quantum computing and quantum information. This paper demonstrates that a universal entangler always exists except for a degenerated case. Nevertheless, the problem how to find a universal entangler remains open.

1.
V.
Bužek
and
M.
Hillery
,
Phys. Rev. A
62
,
022303
(
2000
).
2.
F.
Sciarrino
,
F. D.
Martini
, and
V.
Bužek
,
Phys. Rev. A
70
,
062313
(
2004
).
3.
G.
Alber
,
A.
Delgado
, and
I.
Jex
, http://www.arxiv.org/abs/quant-ph/0006040
4.
J.
Zhang
,
J.
Vala
,
S.
Sastry
, and
K. B.
Whaley
,
Phys. Rev. Lett.
93
,
020502
(
2004
).
5.
J.
Zhang
,
J.
Vala
,
S.
Sastry
, and
K. B.
Whaley
,
Phys. Rev. A
67
,
042313
(
2003
).
6.
A. T.
Rezakhani
,
Phys. Rev. A
70
,
052313
(
2004
).
7.
P.
Zanardi
,
C.
Zalka
, and
L.
Faoro
,
Phys. Rev. A
62
,
030301
(
2000
).
8.
P.
Zanardi
,
Phys. Rev. A
63
,
040304
(
2001
).
9.
L.
Clarisse
,
S.
Ghosh
,
S.
Severini
, and
A.
Sudbery
,
Phys. Rev. A
72
,
012314
(
2005
).
10.
M.
Asoudeh
,
V.
Karimipour
,
L.
Memarzadeh
, and
T.
Rezakhani
,
Phys. Lett. A
313
,
330
(
2003
).
12.
C. H.
Bennett
,
D. P.
DiVincenzo
,
T.
Mor
,
P. W.
Shor
,
J. A.
Smolin
, and
B. M.
Terhal
,
Phys. Rev. Lett.
82
,
5385
(
1999
).
13.
D. P.
DiVincenzo
,
T.
Mor
,
P. W.
Shor
,
J. A.
Smolin
, and
B. M.
Terhal
,
Commun. Math. Phys.
238
,
379
(
2003
).
14.
B. V. R.
Bhat
,
Int. J. Quantum Inf.
4
,
2
(
2006
);
15.
M.
Artin
,
Algebra
(
Prentice-Hall
,
Englewood Cliffs, NJ
,
1991
).
16.
R.
Hartshorne
,
Algebraic Geometry
(
Springer-Verlag
,
New York
,
1977
).
17.
D. C.
Brody
and
L. P.
Hughston
,
J. Geom. Phys.
38
(
1
),
19
(
2001
).
18.
19.
H.
Heydari
and
G.
Bjork
,
J. Phys. A
38
,
3203
(
2005
).
20.
P.
Tauvel
and
R. W. T.
Yu
,
Lie Algebras and Algebraic Groups
,
Springer Monographs in Mathematics
(
Springer-Verlag
,
Berlin
,
2005
).
21.

In fact, we proved Ψ:F1(Z)Z×Z is an algebraic fiber bundle thus dim(F1(Z))=m2n2mn+1+2dim(Z). We also conjecture that dim(X¯)=dim(F1(Z)) and X=X¯.

22.
C. H.
Bennett
,
H. J.
Bernstein
,
S.
Popescu
, and
B.
Schumacher
,
Phys. Rev. A
53
,
2046
(
1996
).
23.
C. H.
Bennett
,
G.
Brassard
,
S.
Popescu
,
B.
Schumacher
,
J. A.
Smolin
, and
W. K.
Wootters
,
Phys. Rev. Lett.
76
,
722
(
1996
).
24.
S.
Popescu
and
D.
Rohrlich
,
Phys. Rev. A
56
,
R3319
(
1997
).
You do not currently have access to this content.