We analyze the role of the extended Clifford group in classifying the spectra of phase point operators within the framework laid out by [Gibbons et al., Phys. Rev. A70, 062101 (2004)] for setting up Wigner distributions on discrete phase spaces based on finite fields. To do so we regard the set of all the discrete phase spaces as a symplectic vector space over the finite field. Auxiliary results include a derivation of the conjugacy classes of ESL(2,FN).

1.
For reviews, see
M.
Hillery
,
R. F.
O’Connell
,
M. O.
Scully
, and
E. P.
Wigner
,
Phys. Rep.
106
,
121
(
1984
);
Y. S.
Kim
and
M. E.
Noz
,
Phase-Space Picture of Quantum Mechanics
(
World Scientific
,
Singapore
,
1991
);
W. P.
Schleich
,
Quantum Optics in Phase Space
(
Wiley-VCH
,
Weinheim
,
2001
).
2.
R.
Jagannathan
, “
Studies in Generalized Clifford Algebras, Generalized Clifford Groups and their Physical Applications
,” Ph.D. thesis,
University of Madras
,
1976
;
N.
Mukunda
,
Am. J. Phys.
47
,
182
(
1979
);
J. H.
Hannay
and
M. V.
Berry
,
Physica D
1
,
26
(
1980
);
L.
Cohen
and
M.
Scully
,
Found. Phys.
16
,
295
(
1986
);
R. P.
Feynman
, in
Quantum Implications: Essays in Honour of David Bohm
, edited by
B.
Hiley
and
D.
Peat
(
Routledge
,
London
,
1987
);
W. K.
Wootters
,
Ann. Phys. (N.Y.)
176
,
1
(
1987
).
3.
O.
Cohendet
,
P.
Combe
,
M.
Siugue
, and
M.
Sirugue-Collin
,
J. Phys. A
21
,
2875
(
1988
);
D.
Galetti
and
A. F. R.
de Toledo Piza
,
Physica A
149
,
267
(
1988
);
J. A.
Vacarro
and
D. T.
Pegg
,
Phys. Rev. A
41
,
5156
(
1990
);
[PubMed]
P.
Kasperkovitz
and
M.
Peev
,
Ann. Phys. (N.Y.)
230
,
21
(
1994
);
A.
Bouzouina
and
S.
Bièvre
,
Commun. Math. Phys.
178
,
83
(
1996
);
U.
Leonhardt
,
Phys. Rev. A
53
,
2998
(
1996
);
[PubMed]
U.
Leonhardt
,
Phys. Rev. Lett.
76
,
4293
(
1996
);
A. M.
Rivas
and
A. M.
Ozorio de Almeida
,
Ann. Phys. (N.Y.)
276
,
123
(
1999
);
M.
Ruzzi
and
D.
Galetti
,
J. Phys. A
33
,
1065
(
1999
);
M.
Horibe
,
A.
Takami
,
T.
Hashimoto
, and
A.
Hayashi
,
Phys. Rev. A
65
,
032105
(
2002
);
M.
Ruzzi
,
M. A.
Marchiolli
,
E. C.
da Silva
, and
D.
Galetti
,
J. Phys. A
39
,
9881
(
2006
);
A. B.
Klimov
,
C.
Muñoz
, and
J. L.
Romero
,
J. Phys. A
39
,
14471
(
2006
).
4.
N.
Mukunda
,
Arvind
,
S.
Chaturvedi
, and
R.
Simon
,
J. Math. Phys.
45
,
114
(
2004
);
S.
Chaturvedi
,
E.
Ercolessi
,
G.
Marmo
,
G.
Morandi
,
N.
Mukunda
, and
R.
Simon
,
Pramana, J. Phys.
65
,
981
(
2005
);
A.
Vourdas
,
Rep. Prog. Phys.
67
,
267
(
2004
);
D.
Gross
,
J. Math. Phys.
47
,
122107
(
2006
).
5.
K. S.
Gibbons
,
M. J.
Hoffman
, and
W. K.
Wootters
,
Phys. Rev. A
70
,
062101
(
2004
);
W. K.
Wootters
,
IBM J. Res. Dev.
48
,
99
(
2004
);
W. K.
Wootters
,
Found. Phys.
36
,
112
(
2006
).
6.
P.
Bianucci
,
C.
Miquel
,
J. P.
Paz
, and
M.
Saraceno
,
Phys. Lett. A
297
,
353
(
2002
);
R.
Asplund
and
G.
Björk
,
Phys. Rev. A
64
,
012106
(
2001
);
C.
Miquel
,
J. P.
Paz
,
M.
Saraceno
,
E.
Knill
,
R.
Laflamme
, and
C.
Negrevergne
,
Nature (London)
418
,
59
(
2002
);
C.
Miquel
,
J. P.
Paz
, and
M.
Saraceno
,
Phys. Rev. A
65
,
062309
(
2002
);
J. P.
Paz
,
A. J.
Roncaglia
, and
M.
Saraceno
,
Phys. Rev. A
72
,
012309
(
2004
).
7.
J.
Schwinger
,
Proc. Natl. Acad. Sci. U.S.A.
46
,
570
(
1960
);
[PubMed]
W. K.
Wootters
and
B. D.
Fields
,
Ann. Phys. (N.Y.)
191
,
363
(
1989
);
A. R.
Calderbank
,
P. J.
Cameron
,
W. M.
Kantor
, and
J. J.
Seidel
,
Proc. London Math. Soc.
75
,
436
(
1997
);
S.
Bandyopadhyay
,
P. O.
Boykin
,
V.
Roychowdhury
, and
F.
Vatan
,
Algorithmica
34
,
512
(
2002
);
J.
Lawrence
,
C.
Brukner
, and
A.
Zeilinger
,
Phys. Rev. A
65
,
032320
(
2002
);
S.
Chaturvedi
,
Phys. Rev. A
65
,
044301
(
2002
);
A. O.
Pittenger
and
M. H.
Rubin
,
Linear Algebr. Appl.
390
,
255
(
2004
);
A. O.
Pittenger
and
M. H.
Rubin
,
J. Phys. A
38
,
6005
(
2005
);
A.
Klappenecker
and
M.
Rötteler
,
Lect. Notes Comput. Sci.
2948
,
137
(
2004
);
K. R.
Parthasarathy
,
Infinite Dimen. Anal., Quantum Probab., Relat. Top.
7
,
607
(
2004
).
8.
M.
Saniga
,
M.
Planat
, and
H.
Rosu
,
J. Opt. B: Quantum Semiclassical Opt.
6
,
L19
(
2004
);
P.
Wocjan
and
T.
Beth
,
Quantum Inf. Comput.
5
,
93
(
2005
);
A.
Hayashi
,
M.
Horibe
, and
T.
Hashimoto
,
Phys. Rev. A
71
,
052331
(
2005
);
H.
Barnum
, e-print arXiv:quant-ph∕0205155;
A.
Klappenecker
and
M.
Rötteler
,
Proceedings of the 2005 IEEE International Symposium on Information Theory
,
Adelaide, Australia
,
2005
(unpublished), pp.
1740
1744
.
9.
D. M.
Appleby
,
J. Math. Phys.
46
,
052107
(
2005
).
10.
G.
Zauner
, “
Quantumdesigns: Grundzüge Einer Nichtkommutativen Designtheorie
,” Ph.D. thesis,
Universität Wien
,
1999
;
J. M.
Renes
,
R.
Blume-Kohout
,
A. J.
Scott
, and
C. M.
Caves
,
J. Math. Phys.
45
,
2171
(
2004
);
M.
Grassl
, e-print arXiv:quant-ph∕0406175.
11.
D. M.
Appleby
,
H. B.
Dang
, and
C. A.
Fuchs
, e-print arXiv:0707.2071.
12.
See
J. E.
Humphreys
,
Am. Math. Monthly
82
,
21
(
1975
);
or
K. E.
Gehles
, M.S. thesis,
University of St. Andrews
,
2002
;
Also see
S. T.
Flammia
,
J. Phys. A
39
,
13483
(
2006
).
13.
G. H.
Hardy
and
E. M.
Wright
,
An Introduction to the Theory of Numbers
, 5th ed. (
Clarendon
,
Oxford
,
1979
).
14.
R.
Lidl
and
H.
Niederreiter
,
Finite Fields
,
Encyclopedia of Mathematics and its Applications
Vol.
20
, 2nd ed. (
Cambridge University Press
,
Cambridge
,
1997
).
You do not currently have access to this content.