We analyze the role of the extended Clifford group in classifying the spectra of phase point operators within the framework laid out by [Gibbons et al., Phys. Rev. A 70, 062101 (2004)] for setting up Wigner distributions on discrete phase spaces based on finite fields. To do so we regard the set of all the discrete phase spaces as a symplectic vector space over the finite field. Auxiliary results include a derivation of the conjugacy classes of .
REFERENCES
1.
E. P.
Wigner
, Phys. Rev.
40
, 749
(1932
);For reviews, see
M.
Hillery
, R. F.
O’Connell
, M. O.
Scully
, and E. P.
Wigner
, Phys. Rep.
106
, 121
(1984
);Y. S.
Kim
and M. E.
Noz
, Phase-Space Picture of Quantum Mechanics
(World Scientific
, Singapore
, 1991
);W. P.
Schleich
, Quantum Optics in Phase Space
(Wiley-VCH
, Weinheim
, 2001
).2.
F. A.
Buot
, Phys. Rev. B
10
, 3700
(1974
);R.
Jagannathan
, “Studies in Generalized Clifford Algebras, Generalized Clifford Groups and their Physical Applications
,” Ph.D. thesis, University of Madras
, 1976
;N.
Mukunda
, Am. J. Phys.
47
, 182
(1979
);L.
Cohen
and M.
Scully
, Found. Phys.
16
, 295
(1986
);R. P.
Feynman
, in Quantum Implications: Essays in Honour of David Bohm
, edited by B.
Hiley
and D.
Peat
(Routledge
, London
, 1987
);W. K.
Wootters
, Ann. Phys. (N.Y.)
176
, 1
(1987
).3.
O.
Cohendet
, P.
Combe
, M.
Siugue
, and M.
Sirugue-Collin
, J. Phys. A
21
, 2875
(1988
);D.
Galetti
and A. F. R.
de Toledo Piza
, Physica A
149
, 267
(1988
);P.
Kasperkovitz
and M.
Peev
, Ann. Phys. (N.Y.)
230
, 21
(1994
);A.
Bouzouina
and S.
Bièvre
, Commun. Math. Phys.
178
, 83
(1996
);U.
Leonhardt
, Phys. Rev. Lett.
76
, 4293
(1996
);A. M.
Rivas
and A. M.
Ozorio de Almeida
, Ann. Phys. (N.Y.)
276
, 123
(1999
);M.
Ruzzi
and D.
Galetti
, J. Phys. A
33
, 1065
(1999
);M.
Horibe
, A.
Takami
, T.
Hashimoto
, and A.
Hayashi
, Phys. Rev. A
65
, 032105
(2002
);M.
Ruzzi
, M. A.
Marchiolli
, E. C.
da Silva
, and D.
Galetti
, J. Phys. A
39
, 9881
(2006
);A. B.
Klimov
, C.
Muñoz
, and J. L.
Romero
, J. Phys. A
39
, 14471
(2006
).4.
N.
Mukunda
, Arvind
, S.
Chaturvedi
, and R.
Simon
, J. Math. Phys.
45
, 114
(2004
);S.
Chaturvedi
, E.
Ercolessi
, G.
Marmo
, G.
Morandi
, N.
Mukunda
, and R.
Simon
, Pramana, J. Phys.
65
, 981
(2005
);A.
Vourdas
, Rep. Prog. Phys.
67
, 267
(2004
);D.
Gross
, J. Math. Phys.
47
, 122107
(2006
).5.
K. S.
Gibbons
, M. J.
Hoffman
, and W. K.
Wootters
, Phys. Rev. A
70
, 062101
(2004
);W. K.
Wootters
, Found. Phys.
36
, 112
(2006
).6.
P.
Bianucci
, C.
Miquel
, J. P.
Paz
, and M.
Saraceno
, Phys. Lett. A
297
, 353
(2002
);R.
Asplund
and G.
Björk
, Phys. Rev. A
64
, 012106
(2001
);C.
Miquel
, J. P.
Paz
, M.
Saraceno
, E.
Knill
, R.
Laflamme
, and C.
Negrevergne
, Nature (London)
418
, 59
(2002
);C.
Miquel
, J. P.
Paz
, and M.
Saraceno
, Phys. Rev. A
65
, 062309
(2002
);J. P.
Paz
, Phys. Rev. A
65
, 062311
(2002
);J. P.
Paz
, A. J.
Roncaglia
, and M.
Saraceno
, Phys. Rev. A
72
, 012309
(2004
).7.
I. D.
Ivanovic
, J. Phys. A
14
, 3241
(1981
);W. K.
Wootters
and B. D.
Fields
, Ann. Phys. (N.Y.)
191
, 363
(1989
);A. R.
Calderbank
, P. J.
Cameron
, W. M.
Kantor
, and J. J.
Seidel
, Proc. London Math. Soc.
75
, 436
(1997
);S.
Bandyopadhyay
, P. O.
Boykin
, V.
Roychowdhury
, and F.
Vatan
, Algorithmica
34
, 512
(2002
);J.
Lawrence
, C.
Brukner
, and A.
Zeilinger
, Phys. Rev. A
65
, 032320
(2002
);S.
Chaturvedi
, Phys. Rev. A
65
, 044301
(2002
);A. O.
Pittenger
and M. H.
Rubin
, Linear Algebr. Appl.
390
, 255
(2004
);A. O.
Pittenger
and M. H.
Rubin
, J. Phys. A
38
, 6005
(2005
);A.
Klappenecker
and M.
Rötteler
, Lect. Notes Comput. Sci.
2948
, 137
(2004
);K. R.
Parthasarathy
, Infinite Dimen. Anal., Quantum Probab., Relat. Top.
7
, 607
(2004
).8.
M.
Saniga
, M.
Planat
, and H.
Rosu
, J. Opt. B: Quantum Semiclassical Opt.
6
, L19
(2004
);A.
Hayashi
, M.
Horibe
, and T.
Hashimoto
, Phys. Rev. A
71
, 052331
(2005
);H.
Barnum
, e-print arXiv:quant-ph∕0205155;A.
Klappenecker
and M.
Rötteler
, Proceedings of the 2005 IEEE International Symposium on Information Theory
, Adelaide, Australia
, 2005
(unpublished), pp. 1740
–1744
.9.
D. M.
Appleby
, J. Math. Phys.
46
, 052107
(2005
).10.
G.
Zauner
, “Quantumdesigns: Grundzüge Einer Nichtkommutativen Designtheorie
,” Ph.D. thesis, Universität Wien
, 1999
;J. M.
Renes
, R.
Blume-Kohout
, A. J.
Scott
, and C. M.
Caves
, J. Math. Phys.
45
, 2171
(2004
);M.
Grassl
, e-print arXiv:quant-ph∕0406175.11.
12.
or
K. E.
Gehles
, M.S. thesis, University of St. Andrews
, 2002
;Also see
S. T.
Flammia
, J. Phys. A
39
, 13483
(2006
).13.
G. H.
Hardy
and E. M.
Wright
, An Introduction to the Theory of Numbers
, 5th ed. (Clarendon
, Oxford
, 1979
).14.
R.
Lidl
and H.
Niederreiter
, Finite Fields
, Encyclopedia of Mathematics and its Applications
Vol. 20
, 2nd ed. (Cambridge University Press
, Cambridge
, 1997
).© 2008 American Institute of Physics.
2008
American Institute of Physics
You do not currently have access to this content.