We extend the notion of Liouville integrability, which is peculiar to Hamiltonian systems on symplectic manifolds, to Hamiltonian systems on almost-symplectic manifolds, namely, manifolds equipped with a nondegenerate (but not closed) 2-form. The key ingredient is to require that the Hamiltonian vector fields of the integrals of motion in involution (or equivalently, the generators of the invariant tori) are symmetries of the almost-symplectic form. We show that, under this hypothesis, essentially all of the structure of the symplectic case (from quasiperiodicity of motions to an analog of the action-angle coordinates and of the isotropic-coisotropic dual pair structure characteristic of the fibration by the invariant tori) carries over to the almost-symplectic case.

1.
Arnold
,
V. I.
,
Mathematical Methods of Classical Mechanics
,
Graduate Texts in Mathematics
Vol.
60
(
Springer-Verlag
,
New York
,
1989
).
2.
Bates
,
L.
, “
Problems and progress in nonholonomic reduction
,”
Rep. Math. Phys.
49
,
143
(
2002
).
3.
Bates
,
L.
and
Cushman
,
R.
, “
What is a completely integrable nonholonomic dynamical system?
,”
Rep. Math. Phys.
44
,
29
(
1999
).
4.
Bates
,
L.
and
Śniatycki
,
J.
, “
Nonholonomic reduction
,”
Rep. Math. Phys.
32
,
99
(
1993
).
5.
Bates
,
L.
and
Śniatycki
,
J.
, “
On action-angle coordinates
,”
Arch. Ration. Mech. Anal.
120
,
337
(
1992
).
6.
Bates
,
L.
and
Śniatycki
,
J.
, “
On the period-energy relation
,”
Proc. Am. Math. Soc.
114
,
877
(
1992
).
7.
Blankenstein
,
G.
and
Ratiu
,
T. S.
, “
Singular reduction of implicit Hamiltonian systems
,”
Rev. Mod. Phys.
53
,
211
(
2004
).
8.
Blankenstein
,
G.
and
van der Schaft
,
A. J.
, “
Symmetry and reduction in implicit generalized Hamiltonian systems
,”
Rep. Math. Phys.
47
,
57
(
2001
).
9.
Bogoyavlenskij
,
O. I.
, “
Extended integrability and bi-Hamiltonian systems
,”
Commun. Math. Phys.
196
,
19
(
1998
).
10.
Cannas da Silva
,
A.
and
Weinstein
,
A.
,
Geometric Models for Noncommutative Algebras
,
Berkeley Mathematics Lecture Notes
, Vol.
10
(
American Mathematical Society
,
Providence, RI
,
1999
).
11.
Courant
,
T. J.
, “
Dirac manifolds
,”
Trans. Am. Math. Soc.
319
,
631
(
1990
).
12.
Dazord
,
P.
and
Delzant
,
T.
, “
Le probleme general des variables actions-angles
,”
J. Diff. Geom.
26
,
223
(
1987
).
13.
Dufour
,
J.-P.
and
Zung
,
N. T.
,
Poisson Structures and Their Normal Forms
,
Progress in Mathematics
Vol.
242
(
Birkhäuser
,
Basel
,
2005
).
14.
Duistermaat
,
J. J.
, “
On global action-angle coordinates
,”
Commun. Pure Appl. Math.
33
,
687
(
1980
).
15.
Fassó
,
F.
, “
Superintegrable Hamiltonian systems: Geometry and perturbations
,”
Acta Appl. Math.
87
,
93
(
2005
).
16.
Fedorov
,
Y. N.
,
Hamiltonian Systems With Three or More Degrees of Freedom (S’Agaró, 1995)
,
NATO Advanced Studies Institute, Series C: Mathematical and Physical Sciences
Vol.
533
(
Kluwer
,
Dordrecht
,
1999
), pp.
350
356
.
17.
Gordon
,
W. B.
, “
On the relation between period and energy in periodic dynamical systems
,”
J. Math. Mech.
19
,
111
(
1969
).
18.
Hermans
,
J.
, “
A symmetric sphere rolling on a surface
,”
Nonlinearity
8
,
493
(
1995
).
19.
Karasev
,
M. V.
and
Maslov
,
V. P.
,
Nonlinear Poisson Brackets: Geometry and Quantization
,
Translations of the AMS
Vol.
119
(
AMS
,
Providence, RI
,
1993
).
20.
Lewis
,
D. C.
, “
Families of periodic solutions of systems having relatively invariant line integrals
,”
Proc. Am. Math. Soc.
6
,
181
(
1955
).
21.
Libermann
,
P.
and
Marle
,
C.-M.
,
Symplectic Geometry and Analytical Mechanics
(
Reidel
,
Dordrecht
,
1987
).
22.
Meigniez
,
G.
, “
Submersion, fibrations and bundles
,”
Trans. Am. Math. Soc.
354
,
3771
(
2002
).
23.
Mischenko
,
A. S.
and
Fomenko
,
A. T.
, “
Generalized Liouville method of integration of Hamiltonian systems
,”
Funct. Anal. Appl.
12
,
113
(
1978
).
24.
Nekhoroshev
,
N. N.
, “
Action-angle variables and their generalizations
,”
Trans. Mosc. Math. Soc.
26
,
180
(
1972
).
25.
Sansonetto
,
N.
, “
First integrals in nonholonomic systems
,” Ph.D. thesis,
University of Padova
,
2006
.
26.
Steenrod
,
N.
,
The Topology of Fiber Bundles
(
Princeton University Press
,
Princeton, NJ
,
1951
).
27.
Wintner
,
A.
,
The Analytical Foundations of Celestial Mechanics
(
Princeton University Press
,
Princeton, NJ
,
1941
).
You do not currently have access to this content.